
NORD 50
FUNCTIONAL DESCRIPTION

NORSK DATA AS

.0. .0. 0......
O... .0. 00......
.0... COOKOO‘COOCOO
000...... 0.. .00,
0.0.0.... 0.. 0..

“w... .0... 00.00....
.0. C... 00......
.0. CO. 0......

NORD 50
FUNCTIONAL DESCRIPTION

REVBSION RECORD

Revision Notes

11/77 Original Printing

Pub1.No. ND-05. 007. 01
November 1977

273% 383939% am, NORSK DATA AS.
996W0$¢OB
399039390
896 (30900
906 0300
00¢ 000 L orenveien 57, Postboks 163 @kern, Oslo 5, Norway

Section:

II

III

IV

Appendixes:

A

E

MAIN CONTENTS
++++

INTRODUCTION

NORD-SO FLOATING NUMBER REPRESENTATION

NORD-SO CPU

EXTERNAL ARITHMETIC C—RACK

EXTERNAL ARITHMETIC A-RACK

NORD"SO OPERATOR'S PANEL

NORD-SO TEST SYSTEM

NORD—SO/NORD—IO COMPARISON

++++

ND—OS.OO7.0I

S E C T I O N

INTRODUCTION

ND-05.007.01

I

INTRODUCTION

NORD~50 is a 32 bit special purpose computer designed to be a

slave processor to the general purpose NORD—lO/S computer.

The NORD—SO consists of 3 l9" racks located in a cabinet identi—

cal to that of NORD‘lO/S.

Of the three racks named, the A, B and C rack, the NORD—SO

CPU occupies the B—rack with 32 modules (148 x 156 mm).

The A and C racks contain the "external arithmetic" executing
instructions not performed in the NORD—SO CPU.

NORD—SO may be connected to physically the same memory as NORD-lO/S

(located in the NORD—lO/S cabinet) via one port in the multiport

memory system (shared memory), or to a separate multiport memory

system as a private memory.

The NORD—SO can execute the following instructions:

Data move instructions
Arithmetic/logic instructions
Data Manipulation instructions
Sequence or branch instructionsDmNH

The NORD—SO does not have

~ Input/Output instructions
- Interrupt

and
— Memory Management instructions.

These functions are controlled by the NORD—lO/S.

ND~05.007.01

SIiC T [0 N I I

NORD-SO FLOATING POINT NUMBERS REPRESENTATION

ND-05.007.01

ll-l-I

FLOATING POINT NUMBERS

A floating point number F may be represented as follows:

The number is represented by two groups of bits, the
EXPONENT E and the MANTISSA M.

The floating point value is the product of its man—
tissa and base 2 raised to the power of its exponent.

NB! 1n IBM terminologi the exponent is called the
characteristic and the mantissa is called the
fraction part of the floating number.

FLOATING POINT FORMAT

NORD—SO operates with 2 floating point formats, one

with 22 bits to represent the mantissa (single pre~
cision) and one with 54 bits to represent the mantissa
(double precision).

The exponent in both formats consists of 9 bits.

31 3O 22 21 0

S E M <*--—-—-Single precision format

9 bits
of EXPO-
NENTS Double precision format
includ—
ing sigr

£
63 62 54 53 32 31

S E M M

Sign bit Radix point of
of MANTISSA MANTISSA

O=Positive

l=Negative
\ J \off .V

IN MEMORY: CA CA+1

IN REGISTERS: R R+1610

R+(R+l6) = Floating Double-Precision Registers (FDR)

CA means Calculated Address.

ND—05.007.0l

11—1-2

MANTISSA

The Sign of the mantissa is contained in bit 31 for
single- and bit 63 for double-precision numbers.

The binary radix point is assumed to be at the left
of the highest order bit in the mantissa, so the

magnitude of the mantissa is always less than 1.

The most significant bit in the mantissa is always
set to a l and the floating number is then said to be
normalized.

The value of a normalized mantissa is then between
Ii and 1.

Because the most significant bit in the mantissa is
always a 1, it needs not be represented directly and
the bit can be omitted to give a better resolution of
the mantissa.

A floating number in memory or in floating registers
does not contain this "1" bit, but the l"l" bit is
inserted in the External~Arithmetic before floating
operations, and is removed when the floating result
is returned to the CPU or memory.

EXPONENT

The 9-bits EXPONENT field allows exponent values be—
tween ~2551cJ (—3778) and +25510 (3778). In NORD—SO
25610 or 4008 is added to the exponent, leaving an
offset or biased exponent.

For example, an exponent of “3210 would be repre~
sented by 25610-3210=22410. An exponent of +lOOm
would then be 25610+10010=35610.

Because of the bias, the correspondence between
actual values and coded representation is as follows:

ND—05.007.01

Il-I-3

REPRESENTATION

ACTUAL VALUE
BINARY: OCTAL: DECIMAL:

Bitz30 22 Single prec.
62 54 Double prec.

¢///////////////ly///
; ' EXPONENT OVERFLOW g
éyznovxncov44oxovznozxéoz40%40240ZZ002Z07Z47/

111 111 111] 777 +255
111 111 110 776 +254

RANGE 402 + 2
100 000 001 OF 401 + 1

> USABLE
100 000 000 EXPONENTS 400 0

011 111 111 377 e 1
011 111 110 376 — 2

é/g/gxg/g/gxg/g/g

é///////////////////////%)////// / ////// Egg/2
Z

/ EXPONENT UNDERFL 20w
dovzooxnovvnoznoAnaOVAOVVVAA0%07%407A497/A07%/

If the actual value of the exponent is equal to -256m
(-4008), meaning a total floating number of less than
2"256 (since the mantissa is between % and l) the

floating number will be assumed to be 0, regardless
of the Sign or mantissa bits.

As the table indicates: When the exponent is decreased

towards its minimum representable value, the binary
number in the exponent approaches zero. Zero has

0 in all bits, both in the exponent and the mantissa.

An exponent overflow occurs if the exponent exceeds

+255, and an exponent underflow occurs if the exponent

is less than ~255.

ND-05.007.0l

BlT:

11-1—4

EXAMPLES OF FLOATING NUMBER REPRESENTATION:
(single precision)

31 30 22 21 0

0 1 111 111 111 11 111 MAX: 11579221077

0 1 000 001 111 11 111 099927 127.999

0 1 000 001 110 00 000 0.527 54
0 1 000 001 101 11 111 0.99926 63.999

0 1 000 001 100 00 000 05-26 32
0 1 000 001 011 11 111 0999-25 31.999

0 1 000 001 010 00 000 05-25 15
0 1 000 001 001 11 111 0999-24 15.999

0 1 000 001 000 00 000 0.5-24 8
0 1 000 000 111 11 111 0.99923 7.999

0 1 000 000 1 10 00 000 0.523 4
0 1 000 000 101 11 111 0.99922 3.999

0 1 000 000 100 00 000 0.5.22 2
0 1 000 000 011 11 111 0.99921 1.999

0 1 000 000 010 00 000 05-21 1
0 1 000 000 001 11 111 0.9920 0.999

0 1 000 000 000 00 l 000 0.5-2O 0.5
0 0 111 111 111 11 111 0.999-2—1 0.4999

0 0 111 111 110 00 000 0.51251 0.25
0 0 111 111 101 11 111 0.999-2*2 0.2499

0 0 111 111 100 00 000 0.5-2“2 0.125
0 0 111 111 011 11 111 0.9992”3 0.1249

0 0 111 111 010 00 000 052—3 0.0525
0 0 111 111 001 11 111 0.9992"4 0.06249

0 0 111 111 000 00 000 05-2-4 0.03125

0 0 000 000 010 00 000 MW: 853517-10~78

0 0 000 000 000 00 000 0

1 0 000 000 010 00 000 MIN: —8.5:-5517-10"78

1 1 111 111 111 11 111 MAX: ~1157921077
L #20 W

?

Exponent A Mantlssa

3'6”“ Hidden "1':
BIT BIAS BIT b1tm manhssa

awn—m: rm"? m

SECTON III

NORD 50 CPU

Section

111.1

111.2

111.3

111.4

111.4.1

111.4

111.4

111.

111.

111.

111.

III.

111.

III.

111.

III.

111.

kn

\OKOU)\J\I\I\J\JO\

111.9.2

111.10

111.11

111.11.

111.12

111.13

111.14

WNH?‘

DETAILED CONTENTS
+++++++++++++++

NORD 50 CPU GENERAL

NORD IO/NORD 5O CONNECTIONS

NORD 50 MEMORY CONNECTIONS

NORD IO/NORD 50 COMMUNICATION

NORD IO/NORD SO COMMUNICATION DETAILS

NORD 50 memory examine/deposit

Simulated memory mode

NORD 50 REGISTERS

NORD 50 FIXED POINT ARITHMETIC

NORD 50 INSTRUCTIONS

Memory reference instructions

Indirect addressing

Inter-register instructions

Argument Instructions

INSTRUCTION EXECUTE SEQUENCE

NORD 50 MAIN STATES

Main states memory reference
instructions

Main stats inter-register or
argument instructions

TIMING SEQUENCE

MEMORY PROTECT SYSTEM

PROTECT ADDRESS SETTING

CPU AND MEMORY OPERANDS TO EXTERNAL
ARITHMETIC

RESULT FROM EXTERNAL ARITHMETIC
BACK TO CPU

CPU OVERVIEW

ND—05.007.01

Page

111-1-1

III-Z-I

111*3—1

111-4—1

111-4—3

111-4—7

III-4~8

111-5—1

111-6—1

111-7-1

111-7-1

111-7-6

111-7—9

III-7~15

111-8-1

111-9-1

111-9-5

111-9—9

111-10—1

III—11~1

111-11-4

111-12-1

111-13-1

111-14-1

III‘I-l

111.1 NORD-SO CPU _ INTRODUCTION

The NORD-SO CPU contains the main registers and arithmetic, the
communication registers NORD—lO/NORD—SO, memory address and data
lines and line driver/receivers for external arithmetic.

These functions are organized on three different circuit boards,
each handling four bits:

Address Arithmetic 1501
Register 1502
Arithmetic Buffer 1503

The 32 bit CPU thus uses eight of each board, making a total of
24 boards.

The timing and control section of the CPU uses eight different
boards:

NORD—SO I/O Control 1500
NORD-SO Controller 1504
Register Address 1505
Cycle Counter 1506
Arithmetic Control 1507
Chip Select 1508
Instruction Control 1510
Timing Control 1519

Figure III.l.l illustrates the data flow between NORD-50 CPU
(B—rack) and the external units.

ND~05.007.01

E.H.HHH

mgnmwm

.xroEmE

btw

S
‘2

B

tohumctou
K;
m

9%
B

mm-mmb
E

bmwomtcoo

mgm

8.5

mmmf
*

65mm

SOEEQO

EOL<OH

_ohcoo

.9

Eco

m®-OD

Hv_U<m.U

Eomu

<F<O

mm.o

3m

QZ<

mwé

D4

Hv_nu<m.0

O...

<F<O

&_

.mwvam

ucmcLz:_<

‘momr

mw.om

mm
mm

mm.mm

rm.mv

nv
cw

mv.ov

mm.wm

mm.mm

Htm

Ewwmmmmm

“Now?

>

.v

»

p

>

.

u

_

8m££<

3323*

“wow?

_

.

w

_

_

_

+

H

#

H

w

w

_

_

_

M

_

_

_

_

H

_

_

Jewrzooauo

_

_

w

_

fl

.

*

_

.

_

_

mm

_

aN

_

mWom

_

mfmr

_

mfimw

_

fifw

_

Ev

_

@o

:Cm

_

_

+

_

M

_

w

_

w

a

M

>

_

xia

J
m.
a

a

a

a

w

a

«

w

w

M

a

W

m

m

m

m

m

m

m

m

9.

m

m

m

m

L

L

L

m
6
w
w
m
o
w
m

m

m

m

m

m

m

w

w

9
w
M

u

m

u
w

N

w

m

w

w

w

v

w
a

g

z

s

L

O

!

m

m

!

m

6

9

Z

Z

Z

Z

Z

Z

m

0

l

U

.0

J

.3

O

8

I.

9

.

Z

./

6

3

w

8

.

m...

3

G.

V

8

Z

L

0

MN

m

.3

W

m

w

0

m

L

I.

L

I.

L

3

y

a

u

.

9

9

9

S

L

L

m

w

m

m

m

m

M

W

M

m.

w

w

w

w

m

m

W

D.

o

J

m

m.

m

H

.8

,L

9

S

.7

‘

8

O

I-

I

.

m

8

7»

Ir

mm

Fm

on

mm

mm

hm

mm

mm

«m

mN

mm

_m

om

mr

m,

hr

mr

mw

vr

mfi

NF

PP

op

m

m

n

m

m

w

m

N

F

\\

1

\\

Q

\\

\

<

\

\

Q

Q

\

\

1

‘

Q

<

\\

\\\\\\

\\

\\\.

\\

\\

\\

\\\

\\

\\

\\

\\

\\Q‘

\\

\\

\\

\\

\\

\\

\\

\\

\\V

\

\

\

\

\

\\

\\

\

\\

\

\

\\

\\

\\

\\

\\

\

\

\

\

\\

\

\\

\\

\\

\\

\\

\

\\

\

\

\

\

\

\\

\

\

\

\

\

\\

\\

\\

\\

\

\\

\\

\

\\

w

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

1

M
n
*
n
"
¢
"
_
+
_

u
+

H
u
.
_

M
.
u
_
+
M
n
+

o

_

.

Es:

<20

$5.292

"

M

8.3

.

“

5&3

"

«Wow.

_

mto:

_

m7?
”

w

:.m
H

__

EV
__

H

We

7

h

_

_

_

.

O

_

_

_

_

.

_

_

.

A<§vmmwmoo<.>m02m2

_

H

0z

_

_

oz
_

_

oz
.

“

mfm__

_

mrmr
.

M

Ffw
_

"

W¢
H

_

We

.kE

AU

_

_

~

_

*

.

_

.

w

_

fl

Em:

9.2

EOmuBk

_

x,

m7?
_

_
*

:.m
_

w
*

Tn
"

fl

*

m.o
_

T

5,9
_

~
*

:.m
M

n

*

3
w

_
*

m6

%

_

_

_

w

_

_

_

fl

_

_

“

w

u

_

_

_

_

_

_

_

_

_

mu

“

¢

_

a

_

a

_

.

_

a

_

4

”

Q

~

+

N

_

_

_

a

_

Fm.mm

n~,qm

mm
om

_

mr.m_

mp.w_

_

r~,w

_

“av

m.o

_

fl

.

_

_

_

_

_

_

_

w

_

_

_

_

PE

_

_

_

_

a

w

«

fl

«

+

¢

¢

no.8

mmém

mm.mm

5.3

3.3

mvév

mmém

mm.mm

mwé
n.

H¥U<m.<

5.0mm

(F40

mmé

mm

DZ<

mm.o

a<

n¥0<m.<

OF

<F<D

111*1-2

3:5

$5m

EEuRQK.

EEK

SmQ

30mm-m\

3&0

QWQQOZ

111.2

lll-Z—l

NORD—lO/NORD-SO CONNECTIONS

NORD—lO looks upon NORD—SO as an l/O device connected to the
NORD-lO I/O system.

There are two NORD-SO interface modules in NORD-lO, the 1071
card for data and control and the 1532.11 card for address.

The communication between NORD—lO and NORD-SO in addition to
common memory takes place on two differential lines, one for
data (16 bits) + control (4 bits) and one for I/O address
(6 bits).

At start—up time the start address and stop conditions are
transferred to NORD-SO. When the NORD~SO stops, 3 Status
Register indicates the stop reason. The Status Register is
available on the communication lines.

If the interrupt system in the NORD-lO is turned on and the
NORD—SO interface is enabled for interrupts, the NORD—lO may
execute in parallell with the NORD-SO.

Only when an interrupt occures will the NORD-lO be engaged to
identify the interrupt source.

In NORD—SO, three modules are taking care of the communication
with NORD-lO, the 1532.11, 1531 and the 1532.1 module located
in the C—rack.

ND-OS.OO7.01

111.3

III~3~l

NORD-SO MEMORY CONNECTIONS

NORD—SO may be connected to physically the same memory as NORD—lO
Via one port in the multiport memory system (shared memory) or
to a separate multiport memory system as a private memory.

MaxtAMbytes Max.512Mbytes

.A r
A

' 1 \\

PRIVATE NORD-SO SHARED PRIVATE NORD-10/S

CPU MEMORY MEMORY MEMORY

32 bit Data High speed 16 bit Data
Data channel
16 bit Data

NORD-‘lO/S CPU

NORD-SO CPU

Control

l/O SYSTEM

id as
H23 NORD-SO COMPUTER SYSTEM

As an option, up to 8 high speed static memory modules may be
installed in the free positions in the C—rack as private NORD-SO
memory (Maximum 32K X 32 bits).

NORD~SO supplies differential address lines of 20 bits + 2
control signals to the port via a l to 1 cable.

For carrying the 32 bit data word, two cables with differential
lines are used, one for bits 0-15 plus 2 parity bits, and one
for bits 16—32 plus 2 parity bits.

ln memory (the multiport memory system), NORD—SO occupies one
port out of four. The remaining three are used by NORD—lO, DMA
mass—storage devices, and the third may be used by a second
NORD‘SO.

The address aiea each port can see is set up by lower and upper
limit switches on the address module (1083) in the multiport
system. In this way, NORD-lO and NORD—SO can have locations of
private or shared memory.

ND—05.007.01

The priority for NORD—lO or NORD—SO requests are fixed and deter—
mined by the physical position of the data receiver/driver module

and the address receiver module in the multiport rack.

The 32 bit memory word is divided between two 18 bit memory
banks with identical memory addresses. The bank in the upper
multiport rack takes care of bits 16~31, while the bank in the
lower rack takes care of bits 0-15.

NORD-SO receives two sets of data ready/address ready signals
from the memory modules in the two banks. These signals are

supplied via the data module (1081) to NORD‘SO where the signals
are latched, waiting for the last one to appear.

Interleave

For NORD—lO to access a NORD-SO word in shared memory as two con—

secutive locations, the NORD-lO address has a two—way interleave.

To achieve a two—way interleave, the address bits in the address
cable from NORD—lO to the multiport are shifted one position to the
right:

Normal address:
l7 13 12 O

bank decoding displacement within 8K module l

Interleaved (shifted) address:
0 17 14 13 l

bank decoding displacement within 8K module ‘

Address bit 0 being the most significant address bit, will now
determine the bank selection (The difference in start address tor
the two banks will be 128K).

For NORD—lO, two banks will alternately be accessed if consecutive
addresses are issued. For NORD~50, each bank is accessed in
parallel.

ND—05.007.0l

III~3*3

NORD~lO access:
Start Start

BANK O addr.
BANK 3 addr.

NORD-lO WORD O XX WORD l XX +

DATA/ 128K

INSTRUCTIONS
WORD 2 WORD 3

NORD-SO WORD O (Bits 31—16) WORD O (Bits 15-0)
DATA/ . .

INSTRUCTIONS
WORD 1 (Blts 31 16) WORD l (BltS 15 0)

An even NORD—lO address (address bit 0 = 0) will access NORD-SO
bits 31-16, while an odd NORD-lO address will access NORD-SO bits
15—0.

ND-05.007.0l

Figure 111.3.1

III-3-«’+

\,

_/’—— MEMORY DATA+ PARIT‘HCONTROL
BIT 16‘3”!

u/MEMORY ADDRESS+CONTEOL (E3 9

“/r— MEMORY DATA+PARITY+CDNTEOL
-’BIT 0—15

‘

LN/zg
Wm ,

20'50 w»! 7:
<3”HHHHHHHHHHI‘ N

d
a

wELJ11 :
c <3 UHIHHH‘HH’HI HIM

*‘HHHHHHH i”. c

; ”a

m: '!
:

c <: i
‘33

C 1UZH’50HS If

DATA+CONTROL 69 Q

NURDJD - NDRD-SO
CONFIGURATXDN

ND—OS .007 .01

111.4

111—4—1

NORD—lO/NORD~SO COMMUNICATION

In NORD—lO, the Write Interface Control Register (W1C) is used

for starting the NORD’SO (bit 2), and the Interface Status (18)

is used for checking the state of NORD-SO (bit 3). Both registers

are located on the 1071 card. Refer to figure 111,4.2.

The 10X instruction IOX W1C = 10X 33 writes the contents of the

A—register into the W1C register, and the IOX RIS = 10X 32 reads

the lS—register to the A-register. 10X address bit 0 determines
the transfer direction.

The IOX device addresses used are valid for the first NORD-SO

in any NORD—lO/NORD—SO system.

In NORD—SO, the following 16 bit registers are located on the

1531 card:

1. The NORD—SO Modus Register, Written by IOX MODSO, 10X 31

2. The NORD—SO Status Register, Read by IOX RSTNSO, IOX 30

The Modus Register is loaded as part of the NORD-SO start~up

procedure, and keeps the stop conditions for the NORD—SO. In

addition to the stop conditions, the EXAMINE/DEPOSIT and SIMULATE

MEMORY modes are set here.

The Status Register is read after the NORD—SO has stopped to find

the STOP reason.

In addition to these two registers, the following 32 bit readable

or writable registers are situated on the 1501 card (Address

Arithmetic) in the NORD‘SO CPU.

READABLE:

PC: The NORD-SO Program Counter points to the next instruction.

TA: Test Address Register, keep: the last memory reference address.

TD: Test Data Register keeps the last Data to/from memory.

SA: Simulate Address Register (only read in SIMULATE MEMORY mode).

WRITABLE:

SA: The Start Address Register First Instruction Fetch.

BP: Break Point Register 1 (Lower address limit).

BQ: Break Point Register 2 (Upper address limit).

SD: Simulate Data Register (only written into during SIMULATE
MEMORY mode).

ND—05.007.01

III—4~2

All these registers are read/written by means of two 10X in-
structions, each transferring 16 bit in parallel. If device
address bit 1 in the 10X instruction is set to zero, the 16

least significant bits (bits 15—0) are transferred. (Transfer

direction = bit 0). If bit 1 equals one, the 16 most significant
bits (bits 31-16) are transferred.

More information is given in the NORD—lO/NORD-SO Communication
System Manual.

ND-05.007.01

111.4.1

111*4"3

NORD—lO/NORD-SO COMMUNICATION DETAILS:

As an attempt to explain the NORD~lO/NORD"50 communication in
som details, the signals on figure 111.4.1 are listed below.

Modules in NORD-lO:

1532.11

BA: NORDrlO address bus carrying the 12 lower bits of the
instruction register during an IOX instruction.
These bits, also referred to as the device address bits,

indetifies the 1/0 interface register to be read or

written into during the 10X instruction execution.

M: 10X address bits on differencial lines.

1071 (Also refer to figure 111.4.2)

BD: NORD—lO l/O DATA bus (16 bits). Equals the A-register
during an 10X output instruction (10X address bit 0:1).
Equals the contens of the 10X addressed register at the

end of an 10X input instruction (BAO = O).

D: Data bus on differential lines.

DEVC: COMPLETION signal from NORD-SO (1519) indicating that

NORD-SO have just stopped. Resets the RUN flip-flop and
generates an interrupt to level 12 if the interrupt enable
flip~flop is set. Resetting the RUN flip~flop will set
bit 3 in the interface Status Register, and at the same
time a light diode is turned off, indicating that NORD~50
has stopped.

tS: START Signal to NORD—SO.
Active when hit 2 is set in the Interface Control Word

Register. Sets the RUN flip—flop and a light diode is

lit, indicating that NCRu—SO is running.

STOP: STOP signal to NORD~50 (external~stop).
Active when hit 4 is set in the Interface Control Word

Register or Master Clear in NORD—lO is pushed.

STROBE: Active when device address 60—77 in 10X instruction is

(STR) specified.
Start decoding NORD-lO I/O address bits lOAO,lOAl and
[OAS to

1. Either read or write communication register in
NORD—SO (IOAO)

c. To read or write the 16 least or most significant
l)its (lOAl)

ND-OS.OO7.01

111—4—4

The STROBE signal may either do as indicated, or start
decoding IOAO—IOAS to

1. Read NORD~50 Status Register (10X 30)

2. Write NORD—SO Modus Register (IOX 31)

Modules in NORD—SO:

1532.11 Position C26

The control signals DEVS and STR are converted to TTL level and
supplied to the 1519 modules to START or STOP NORD-SO.

The control signal STR together with the NORD~lO l/O device
address are converted to TTL level and supplied to the 1504
module. v“

1532.1 Position C24

Converts the tri-state NORD-SO data bus BD to differencial
lines and vice versa.

The IOAO signal controls the data flow direction of the BD
bus.

1531 Position C25

This module contains the Modus Register (set by IOX 31) and the
NORD-SO Status Register (read by IOX 30).

ND—05.007.01

J<~Ummmm_D

JFFJ<§EOZ

..

.IIw

wkd‘kmFC.

wwmmDQ<

0:

1m
1!

m

is

/

o

u

Anmém

$23a

2:50

3089

JOmFZOo

mmOmkm

m

uObm.mkm.w>wo

__.<0_3&9

mm
.

.mmm

1

_

O

3&0

EOLH._

mDumwm

.

.

7

_

..

w

.

,3}.3Ju..
.....

.....
.....

O

_

.

O

_a

.

.

.

c

_

_

:J

a,

_

oh

I

~

I

.

E

.

M

.3m

........

a

3602

336
8‘

_

__

V235,.

m>mo

(E

u;

_

M
O

zoEEOo

:35

30
~

39

mwo

F203

figwwééomr

mgomfim40mw

‘

mm

E

K

mm

no

KS

:39

«grommwmmg

a:

Awrvbmsmmmkzfi

<55

mmmmonE

mu_>mo

‘Omm

O<wm

OTZ

Fdfrma

eéomw,w\wom~

m.fiomr,méomw
mh

N5

«4.

On

ZOF<9ZDEEOOomdmOZBTDmOZ

0m

4w

Um

<w

wfzufim

O‘m_

1m

4<C12mmwunto

NA}:

9:3“—

3

J

mm

wk

E»

Eocov+m0mm

m

fi

.wmm.§oo

mtm>>5<mm

.Omm

351%

o

+

I

mu<ummkz_

m

Al

23m

92

26v

not?

8.2

no;

m>moJ

3.2

:35

o

A

‘

.

w
«

26.3w

o>mox_

III-‘é-G

J

Np

Jm>m4

PmDEEmFZ_

‘

Awrv

0m

<53

A

V

20
0k

biz.

iv

m<m

m

.

%

A

m:

..

o

ozrpmm

mu.

mmém

mooo

o

kn:

OPZ

I

o

wDOUmD

‘Il

m<m

‘mOD/w

‘1

m<m

«(m

‘|

120mm

mOmm

Show
_

FDAFDO

‘1

N<m

A]

wOOUwD

V

orlz

Cowflmmm

mane—2

Om.Z

3:23

>>0

‘1

llomz

20mm

5.72.

m4m<2m

024

Fm

.

‘IIII

mm.om

$385
om
2

Emmy:

mo

om

own:

:80;

33:00

83185

3:2:

>>U

A!

mDOOwO

:9

mm

QOtEKDEEOU

Omsz-QN

.2

€m

23m

wumtmwcs

mm

AIMwll

fill!

_.<m

O<m

mn_nr: nn7 fl?

111.4.2

III—é—V

NORD—SO MEMORY EXAMlNh/DEPOSIT

Refer to figure 111.4.3.

Whe n NORD-SO is in stop mode, the memory cells may be
examined or written into via the A~register in the
NORDrlo.

The write feature is useful when executing programs
in NORD- 50 private memory This is a part of the
memory locations where NORD— 10 has no direct access,

either because of system or memory address restrictions.

DEPOSIE

1. Set the DEPOSIT bit (bit 13) in NORD—SO
Modus—register
A = 20 000; IOX MODSO

2. Load the new data into the SD (Simulate Data)
register
A = Bit 0-15 of DATA; 10X WRSD;

A = Bit 16—31 of DATA; 10X WLSD

3. Load the target address number into the SA (Start
Address) register
A = Bit Owls of ADR; 10X WRSA;
A = Bit 16—3] of ADR; 10X WLSA

A. Activate NORD‘SO to execute the write operation
SAA a, 10x W1C

LXAMINE:

1. Set the EXAMINE bit (bit 12) in NORD—SO
Modus—register
A = 10 000; 10x MODSC

2. Load the address number into SA as 3. in DEPOSIT

3. Activate NORD—SO to execute the read operation
SAA A, 10X W1C

4. Transfer data word from TD to A—register
10x RRTD Z Bit 0—15 to A;
10X RLTD Z Bit 16~31 to A

To DEPOSlT/EXAMINE the next memory location, the SA

register must be loaded (step 3) with an address number
incremented by one.

ND-05.007.0l

111.4.3

111-4—3

SIMULATED MEMORY MODE

When bits 14 and 15 are set in the NORD—SO Modus—
register, the NORD—lO acts as a memory for NORD-SO
by means of the communication registers and data com—
munication lines.

#3:::::::::;fl \
I |l
l I
. MEMORY :. NORD—lo MEMORY
I .J
L_.___. ~-.._ .__....L’

£ K SLMULATED
I

:
MEMUR\ {UR

: l NORD~3H
I I

I L1 t... t,
ADR :)ATA A"“LL J

NORD—SO NORD—lO/NORD-SO
COMMUN lCA'l‘ [ON 11 l NIZS

The NORD-SO memory can be disconnected and NORD-lO
will supply the instructions and operand data and re-
ceive data on store instructions.

In SIMULATE MEMORY mode, the communication registers
are used as follows:

TA: Used to transmit memory addresses to NORD*lO

SD: Used to transmit data to NORD—SO (from simulated
memory)

TD: Used to transmit data from NORD-SO

ND-05.007.01

III—4—9

FLOW*CHART SHOWING A MEMORY REFERENCE READ INSTRUCTION
EXECUTED IN SIMULATE MEMORY MODE:

Refer to figure 111.4.3.

l. A—register NORD-IO = 140 000 2 Set INSTRUCTION FROM and
IOX MODSO DATA TO/FROM NORD—lO bit

i
in N-SO MODUS register.

2. Set A—register = 16
most significant NORD‘SO
instruction bits

10X WLSD Z Left part of NORD~50
,...... . Set A—register = 16 instruction ~e~SD

least significant NORD-SO
instruction bits

10X WRSD Z Right part of NORD-SO
instruction -$-SD

(

3. START NORD~SO:SAA A, IOX WIC Z SD'~¢'NeXt instruction
» register NI

4. Transfer NORD‘SO STOP— Z STOP-—e~SD
instruction to SD as 2.

5. START NORD—SO % INSTRUCTION —4*IR, STOP'—+‘NI

6. Set A—register = 16 most
significant NORD~SO-DATA

IOX WLSD Z OPERAND DATA-*+~SD
Set A~register = 16 least
significant NORD—SO-DATA

IOX WRSD

7. START NORD—SO Z Execute instruction in IR
with data in SD.
When execution finished, the
STOP instruction will be
executed bringing the control
back to NORD~10

ND—05.007.01

If instruction being executed does not write result to memory, but
to register N, a ”STORE” instruction must be executed to write
reSult to SIMULATED MEMORY (the SUM bus is written into the TD—
register).

111—4—10

Execute ”STORE register N”

7

Read 16 most significant TD
bits to NORD—IO A-register

IOX RLTD

Read 16 least significant TD
bits to NORD-lO A-register

IOX RRTD

l
Compare result read (TD)
with expected reSult in
NORD~10

ND~05.007.0l

111-4—11

lf the instruction being executed was a sequence or branch»
instruction, the data is of no interest.

In these cases, the output of the address arithmetic con-~
taining the branch address is latched in the TA-register.

This makes it possible to test all JUMP9 CONDITIONAL JUMP
or SKIP instructions.

l
Read 16 most significant TA
bits to NORD~lO A—register

10X RLTA

Read 16 least significant
TA bits to NORD*10 A“
register

10X RRTA

Compare address read (TA)
with expected address in
NORD—lO

ND~05.007.01

III-4—12

N—-10 ~ N—SO I’INEMONIC DEFINITION

Mnemonic Octal value Function

10X 164000
WRBP 61 A-—~a BP(O,lS)
WLBP 63 A—-----> BP(l6,31)
WRBQ 65 A—-—>BQ(O,IS)
WLBQ 67 A———->BQ(16,3I)
WRSA 71 A -~a~SA(O,lS)
WLSA 73 A-—€>SA(I6,31)
WRSD 75 A-———>SD(O,15)
WLSD 77 A -4>SD(16,31)
MODSO 31 A ———> MODUS(O.15)

NORD-SO MODUS-REG.

Bit Meaning

0 Stop on overflow
1 Stop on underflow
2 Stop on parity error
3
4 Stop if BP ffAny Reference ézBQ
5 Stop if B? fifProgram Counter 4.BQ
6 Stop if BP:£ Data Reference 4.BQ
7 Stop if BP.f Data Store Address é BQ
8 Invert limits on 4—7 (X.4 BP or X a BQ)
9 Master Clear

10
ll
12 Read Memory Cell (EXAMINE)
13 Write Memory Cell (DEPOSIT)
14 Data to/from NORD—IO
15 Instructions from NORD~lO

NORD—SO/NORD—lo NORD—So STATUS REGISTER
RRPC 60 pc(o,15) wwalk EEECE: Renter Meaning
RLPC 62 PC(16,BII ~+>2x 0

'
OPRRSA 64 SA(O,15) ——>1x 1 Piggram 5?

RLSA 66 SA(l6,3l)——>Zk 2 §
ress

Violatrwn
RRTA 70 TA(O;15) -—+>A 3 Onstgictlon

hang up

RLTA 72 TA(I6,3l)—+>A 4 Vgr fiw
RRTD 74 TD(O,15) ——+>A 5 3“ er :w t
RLTD 76 TD(l6,31)-—+>A 6

emory eques

RSTNSO 30 STN5(0.151~4>A “eméry WRITE/READ
7 Parity error
8 Memory hang—up

COMMANDS TO NORD-SO (WRITE INTERFACE CONTROL)

WICSO 33 A0=13 Enable interrupt
A2=12 Start NORD—SO
A4=lz Stop NORD—SO

INTERFACE STATUS

RISSO 32 AO= Interrupt is enabled
A3=l: NORm-SO is stopped

H .-

ND-05.007.01

r “““““““““““““““““ '1 [11‘4"13

’ARITHMETIC

A-—— ADDRESS
MEMORY

MD<~ DATA

1
l
1
I
:
l
s
1
I
I
l
I

N70 — N50 BUS
BUM

SUM BUS
CPU ARIT

RESULT
BUS EXT.
ARI TH. SUM

SELECTCR

IR
MB

Ar u

Memor
Dafa Bus

'Dafa Bus
I
I

REA DABL E REGISTERS
W N-SO COMMUNICATION
35:33; WRITEABLE REGISTERS REGISTERS

Figurc 1|].4.3 ND-OS.007.01
. 8. 8.77 PK!

111.5

III-S-l

NORD—SO REGISTERS

The registers in NORD—SO are built with type SN7489 64 bit
READ/WRITE MEMORY integrated circuits.

Each 1C consists of 16 registers or memory cells of 4 bits
each.

It takes approximately 200 us from selecting the register until
the contents of the selected register is latched in the operand
latch.

After enabling the register address for approcimately 200 ns,
the enabling can be taken away, and a new register selected.

To reduce access time for 2—operand instructions, the register
block is duplicated, with identical content.

This identical copy of the register block is called the REGISTER
BLOCK B.

When writing information back to the register block, the same
information is written both into the Register Block A and
Register Block B.

The 16 index and base registers are duplicated two times more,
still with identical contents. One set is used for reading X
and one for B during address calculations.

During WRITE, the address for the X and the B register is the
same as for the register blocks A and B, therefore during
WRITE, identical data is written into register blocks A and B,
index register RX and base register RB.

For address calculation, the address of the RX and the RB register
is taken from the X and B field of the memory reference in—
struction.

There are 32 floating point registers with a 32 or 64 bit word
length.

For 64 bit (normal) precision where word length is 64 bits, one
floating register consists of a pair of general registers.

Floating registers are denoted FR in 32 bit precision, and FDR
in 64 bit precision.

ND-05.007.0l

III-S-Z

The NORD—SO arithmetic unit handles both 32 and 64 bits as complete
parallel operations in hardware.

NB! Register 0 always contains ZERO. This implies that FRO = O,
BRO = O, XRO = 0.

In hardware, this is implemented by disabling the operand
selector (giving zero output) each time register zero is read.

ND-05.007.0l

NORD—SO REGISTERS III—5—3

SUM BUS WRITTEN INTO B, X, GRA AND GRB (IR 12—17)
1

‘ 2__ XRO
/ammm BRO __G332 FDRO INDEX

FRO FDRl BASE _REGISTER
R0 SINGLE DOUBLE REGISTER ___ x

PRECISIOD PRECISION B __
GENERAL (32 BITS) 64 BITS) XRlS

‘"‘EESLEEER FLOATING ELOAT.REG. BRlS/...... — 7%3 REGISTER EDRIS TO ADDRESS
ERIS* ARITHMETIG

CRIS %

// REGISTER’ OPERAND A
TO CPU ALUMR0 OR EXT.ARITH.__31—O FDRO

”_ FDRl MODIFICAT.
GRl6 REGISTER

__ _“ _H M
..__ __I_ *MR15_. WM 96

EDRIS
A _

GRBl * : . ..
i REGISTER

SUM FROM CPU ALU OR EXT.ARITH.
ggEiggDAEU

‘ 1 OR EXT.ARITE.I 1 IF INTER—FDR16 REGISTERI FR16 FDR17 OPERATIONS""" GR32 "
__ BIT 63—32

—~ *w_ * EDRSI
_M FR31
GR47 * 1 . z:

// OPERAND B
(INTER~
REGISTER)

__ FDR16‘ __ FDR17
_§R48 __
q_ wEIT 31—0 *=PHYSICALLY
__ __ THE SAME

% REGISTERST“
EDR3I

»y, , ~ »."ER63 %Ilgure 111.3
‘ I

OPERAND A

k+~ 32 13ITS-«fi ND—OS.OO7.01

III.6

III-6—1

NORD-SO FIXED POINT ARITHMETIC

The main component in the NORD—SO arithmetic is the ARITHMETIC/
LOGIC UNIT SN74181.

This integrated circuit works with two operands, the A and
B—operand, 4 bits on each IC. 8 ea. 74181 IC's is then needed
to handle operands of 32 bits or 1 NORD—SO word. The ALU is
located on the REGISTER board 1502, one on each board. (There
is a second arithmetic unit for floating point additions).

The state of the mode control input (FS4 pin 8) (refer to
figure 111.6.1) determines whether to do an ARITHMETIC operation
(ADD, SUB) on the A and B—operand, or to do a LOGICAL operation
on the operands.

The four function select inputs FSO—3 select one of 16 different
functions to perform.

The instruction repertoire of the NORD-SO is built according to
these operations, and the Function Code bits (FC) in the in—
struction are selected to give a straight forward decoding to
generate the Function Select bits FSO-3.

When executing instructions that cannot be done in the ALU,
for instance SHIFT, BIT OPERATIONS, FLOATING ADD/SUBTRACT,
MULTIPLY and DIVIDE, this is decoded from the Function Code
field in the instruction, and a EXT (External) signal is gene~
rated and the operands are sent to the EXTERNAL ARITHMETIC
which executes the instructions and presents the result back to
CPU. The ALU is disabled during this operation, presenting only
zero on the output data lines.

The carry input is only in use during an ARITHMETIC operation
and the carry input to the first ALU may be forced to a "l" and
propagated through the ALU‘s.

To speed up the carry propagation, the carry is fed to a carry~
look ahead circuit 74182 and the carry generated is then fed to
the next ALU.

The output of the ALU:

l. The OUTPUT DATA or SUM (SS)

2. A ZERO signal indicating that all the output data is equal
to zero

3. Carry to the next ALU

ND-05.007.01

III—6-Z

For both operand input to the ALU, there is a selector and a
latch.

The latch latches the operands before the arithmetic/logic
function is done.

As operand A, one of the following units is selected:

1. Data from the Register Block A

2. The Overflow Register

3. The Remainder Register

and as operand B, one of the following lines is selected:

1. Data from the Register Block B

2. Data from memory

3. Operand from the instruction itself (argument data)

ND-05.007.0l

III~6—3

__/y_50 ALU

CARRY INPUTC MODE CONTROL F84

580

SS1

OPERANDS BS1o
OUTPUT DATAINPUT

$32

$83

FSO

FUNCTION F31
SELECT

F52 ZERO

F83

15015-150115
.a 0'11CGS4

CARRY OUTPUT CY84

CPSS ————p

CGSB —.‘

——>CYS 8 to 3. ALU
CPS12 ————u

C6512 I

___..._._.__‘......_._._.....__+_._._.._.._-—

ESSEY -——>cvs12to4.Auu
CPS16 “-5“ AHEAD

—>C6316 74182

E
CARRYINRUT

1
M 15022

A34
, ——»u> 4

884 2 ALU SS
0

—--——> 5
$30

CARRY LOOK AHEAD CIRCUITS ON THE 1502 CARD USAGE:

§CARD CARRY LOOK AHEAD FOR:

é1501.1,1501.2 Address arithmetic X, B 1 D adder

i1501.3,1501.4 Address arithmetic X+ B adder
[1501.7
{1501.5. 1501.6 CPU ALU

Figure ”1.6.1.

ND~05.007.01

III.7

IIir7-l

MEMORY REFERENCE INSTRUCTIONS

The memory reference instructions have in common that the
execution of an instruction involves calculation of a memory
address, either to read out the operand or to write the
operand or result back. The memory addressing may be direct
or indirect.

Memory reference instructions contain a single bit direct
addressing indicator I = 31, two 4 bit register addresses
(X and B), a 5 bit function code, a 6 bit register address
for the other operand, and a 12 bit displacement.

If I equals 0, the effective memory operand address or cal—
culated address (CA) will be the sum of the 32 bit contents
of the X and B registers and the 12 bit displacement.

The 30 memory reference instructions are two~address in~
structions affecting one directly or indirectly addressed
memory location and one register.

The result may either be stored in the same register or the
same location.

During a jump or conditional jump instruction, the next
instruction is fetched from the calculated address.

The operand read from memory (refer to Figure III.7.1) goes
via the MB lines through the B operand selector and is latched
in the B operand latch.

The register operand is selected through the A operand
selector and latched in the A operand latch.

One exception from this is the MODIFY instructions JPM, JNM,
JZM and JFM where the MODIFY REGISTERS in register block B
are selected and latched as B operand.

The result is written either to the selected register or
calculated address via the SUM bus.

In the following, all the memory reference instructions are
lsited with information of the hardware execution of the
instruction in the CPU ALU.

In the hardware diagrams the memory reference instructions
are devided into groups given by IR bits 20,21, and 22.
(Group—numbers are listed).

ND—05.007.0l

”mZOHBUDmBmZH

UHOQH

mm

MH
w

mHomo

kcm

>HOEQE

on

HHSmwM

muHHZ

”wHowu

UHHQB

H+m+4

mm>Hm

.mMHmo

fiwomom

sq

"mHowo

©GOUmm

goumH
m

y!H<ov

.noumH
a

#IAmv

umHEHo

pmHHm

>HOE®E

Du

uHsmmH

wuHHB

uwHowo

©HH£B

Dom

musomxm

umHowo

maoomm

QUHMH
m

Alfiduv

HQUpMH
a

¢lv

”mHowo

umHHm

coHqSm

mm

mnm

mw>Hm

.auo

Uwoyom

EHHB

"mZOHBODmHmZH

UHHflZEBHMd

<0

AI

:uumH
<

wuHH3

umHuwo

wqe

m

A!

LoumH
m

muz

umHuwo

@C00mw

Amuv

~goumH

<,¢1Hmv

uwHoNHo

umHHm

III—7—2

SUUMH
m

Al

H+du

Op

oH+m

mmCMHp

mHumo

GGOUmm

«0

on
m

wmcmuu

mHomo

umHHm

Hmuv

mmwuwwm

Umudoo

CH

HmumHmmH

®H0pm

©H+m

0p

HH+4UV

Hmmmcwuu

mHomo

Ugoowm

m

on

Amov

Hmwmcmuu

mHomo

umHHm

q

Qmsomnu

womHHU

Hmzv

flcmnmmoxm

”mZOHBUDmBmZH

mmmmzmmB

¢H¢Q

msomm

coHuozuumcH

%H0Ewe

EOHm

wcmummo
n

m:

m

m.@

o

H

H

H

H

0

m2

m

WOH

m

flaw

Aaov

wad

DZd

do

m+¢

H

o

H

o

o

H

m:

m

m0

m+¢

H

o

H

o

O

H

m2

m

OOH

pcmMUCH

>HOEmz

2H2

<0

m+d

O

O

H

O

O

H

m2

m

40

m+<

o

o

H

o

o

H

m:

m

m

>H0Eme

on

©©<

Sad

m

Hlmlm

H

o

O

H

H

0

m:

m

vUH

m

EOHM

Aduv

HUMHHQSW

mDm

m

m+m

o

o
H
o
o
H

m:

m

o

m
ou

Aaov

mum

mom

m

mHDm

O

H

H

O

H

0

m2

m

m0

mHQ<

O

H

H

H

H

H

m2

m

m

Hmv

mam

Hmov

wmcmnuxm

mzx

H+¢u

mHQ<

o

H

H

H

H

H

mH+m

m

MmHmHowm

mcHumOHm

do

mHQ<

o

H

H

H

H

H

m

Ho

HmuwHowm

mHQwoa

wwoum

mam

<0

mHQQ

O

H

H

H

H

H

m

m

HmumHmmm

QMOpm

mBm

oH+m

mHom

o

H

H

o

H

0

m2

owHHmmv

pmHmmm

mcHumo

m

mHQm

o

H

H

o

H

0

m2

no

umumHomm

mHQSOQ

GMOH

QQH

m

mHQm

O

H

H

O

H

0

m2

wUH

Hmumflmmm

UMOH

mDH

ummmm:-Immmmmiipuwiiumwm:-mimlmluml‘JmH

11111

muamdomw

.............

mmmwmmmmmmw

>HHMU

.Hucou

mm

pomHmm

UmMmO

Uwouom

wwoz

QOHpucdm

"ZOHBflmmmO

3H4

ZOHBODmBmZH

muzmmmmmm

wmozmz

ND~05.007.01

msnxmz

coUmHcm
x»

III—7~3

v

wHowoMmpcw

N

..www

@236

MH

w

mHomUHmucm..wmw

QZDW

MH

w

mHU%UMmpcmxswmw

AHMW

MH

umumHm

UwHMHuwmm

CH

xomn

ampaz

H+Aomv

amussoo

EMH@OMA

.mww

mzbh

MH

0mMN

Muwnu

DHd

.wwm

CH

m2

QSDh

MH

flaw

Hmm

xomflo

m

©U<

.mww

aspw
WH

vwxowso

ommm

mge

.wwm

mEDb

MH

wuwflu

AHmmv

UHQ

ZOHm

wfifi

.mwm

am

wfi

mmxuwzu

sum

wo

usmuso

ommm

age

.wwm

mHMm

MH

wwxuwzo

q

mo

usgpso

flammv

wag

cwflm

mse
"mZOHBUDmBmZH

muzmbOmm

Q24

MUZMDOMm

HmZOHBHDZOU

wcozwcozmcozwcoz.cmmwsmwuHMBOZwcoz

m+¢m+¢m+<m+£m+¢mHodmHQ<mHQ4mHQd

OOOOHr—ir—iv—i

r-ir-{u—{t—lOOOO

Ht—‘r—‘IHGOOD

0

o

H¥H+Um

o

o

H

©H+m

o

o

H

©H+m

o

o

H

®H+m

o

O

H

©H+m

H

H

H

H

H

H

H

H

H

H

H

H

H

H

0

m2

H

H

0

m:

H

H

0

m2

H

H

0

m2

OHmNmD:mD: (I: 01 DC

mucwEEou

.ummo

wmoMOh

.MUCOU

mm

womHmw

wcmummo

coHuUZDL

owH

m.¢a+um

mean

cusumm

mam

o
x

Amv

m“

mama

mam
m

on

gwpmflmmm

mafinoz

w©<

zmn

muH
o
u

“my

MH

mEDn

mam
m

ou

Hmumfimmm

>MHnoz

mam

zNw

ouv

Amy

mg

mzzn

wan
m

ou

gmumflmmm

>MHuoz

wwm

zzm

o
A

Amy

WH

azaw

can
m

on

Hmpmflomm

>MHmoz

wmm

zmn

o
x

Amy

mfl

mean

mmn

o
n

Amv

w“

mesh

Nmm

moH

ouv

Amv

MH

mean

zmn

cum

Amy

ma

mean

mmm

Amov
x

Amv

“H

mflxm

emu

Amov
u

Amv

mfl

mflxm

mmu

HoH

V

A<ov
V

“my

ma

aflxm

gmo

A¢UV.A

Amv

ma

mfixm

omu

QDOMU

:OHuuaMumcH

umZOHBdmmmO

DH<

mZOHBUDmZH

mozmmmmmm

WMOZMZ

ND~05.007.01

uHumEHHHHm

H¢zmmexm

CH

UQUDww

EOHUUDMmH

mam

amu
cH

mwzoumH

ccmummo

111*7-4

coHuUSHumcH

mm

£0

wnu

wusomxm

:oHpozupmcH

mm

40

mo

ucmucoo

wpsomxm

uzmujousmujousmusoMagusouzgusousgusoudmuzopdmusoudmusousmudoMSQHSOusmpso

0mmNOfiflNOfiMN0mmN0mmN0mMN0mMN0mmN

O OO O O Ommouom

r-{v—Jr—lr—(v—lr-lH.Hucou@602

H

H

o

o

+

mHQSOU

mUH>H©

mcHumOHm

Q>Qm

H
H
o
o

m©H>H©

mcmo

>om

H
H
o
o

mHnsow

HHmHuHse

mcHHmo

22m

H

H

o

o

HHmHuHse

mcHumo

32m

H

H

o

o

t

mHQSO©

omaSm

mcHumo

ammm

H

H

o

o

pomHufldw

wcHumo

mmm

H

H

o

o

COHmHomMQ

wHQDOU

GUM

mCHumo

934m

H
H
o
o

+

cam

qumo

mm;

H

H

o

o

m>H©

HmmmucH

>Ho

H

H

o

o

owH

mHgHuHSE

mmucH

was

H

H

o

o

H
n

m

H

H

o

o

o
u

m

OOH

QUDUQXH

®MOEwm

Uxm

llllllllllllllllllllllll

mmmmmmmwmmm

mm

UUwmCOHuocsm

"DH4

Dmo

mmB

UZHmD

B
D
Z

ZOHBUDmEmZH

muzmmmmmm

Wmozmz
ND-05.007.01

111*7-5

£030?s

aka

9:9m

>5Em5.

E0;

Ucmhmao

m2

mw+<m

Euflmmm

Umwm

HKAHH

983m

GEN

\\\all

Louqw

Ezm

mm

x11

m

‘02

//

ES.

MUOJm

g!

/

mwkmfiumm

.mmm

\

[lull

\

Id

\
\\

mtg
mm

//

hcuuflcm

mwé‘Omm

//

02<mmm0.m

83w

m4

ioEmE

H

32mm

coco—Sn.

BumEam

33S

EOC

mummy».

>m02w2

>

00

$363
9

mum

3;t

0“

END

wxw

x

3

D

.93;

Ummm

:33“.

k

Esw

1111111

but-
-
-

x

w\

“

1

~|v

1—

\\

\

\

0

_

\

\\.l|l|

\

“

.

Fu
5
m.
:

amkuguoeBE

3mm
.v

\\\

R

\

7

~

/

\

w

0

+

_

_

1/

“

004M
“

.oz

0

BEEIFE<

:4<zmm:.xm_:
_

/

<m

\

x

\

.

aims

azaj:

“

.

,

wmmhmémm
m:

.02...

%

:uuwu

c2333.:

imz
.m

.

Illa

_

4

VII

lllllll

1.1L

cJ

m

33
mm

m

m

‘
.

\

._.Xw

_

53m

W

mm
o

m
N

Es:

9:230

umwm
.N

ucmaaoé

“

m

\

»

ccm.wao,<

DZ<mmmO,<

\

2239

53mmm

39w
.r

$

H

‘mmm

3:2,

I

AXV

/

,OmE.X

A

0:.m21tm<

mmwmoo<

$11!

n

mfo

0mm
/

AmmmLUu<

US$303“:

<0

:5

/

.twfixm:

F+

\m

F

,m

\

wizmg
.Ow

$0.3m

‘6“:o

.

Eimoi

mum

E222

_

71

On

Ammovyov

/

h2w§m0<4am5

/

mmOOUmo/
m

93m

x

o<mm

,LZ

556mm

/

\

f

\

D

wmoo‘slntmfl

“H

Um

I

m

\

X

_

HOMKEZ

mZOCmPmE

mOmmmmm

T

\

l

1

\

>mOEmE

mOm

>>O.E

<._.<Q

o

2
NF

2

9

mm
mm

mm

R

dm
5

111.7.1

Ill~7—6

INDIRECT ADDRESSING

Indirect Addressing takes place when bit 31 in the In-
struction Register is equal to 1.

This means that the address now in the instruction word does
not point to the data or operand, but rather points to a
"pointer to" the data. Thus, the instruction word address
is said to be ONE LEVEL away from the data.

It is also possible for the instruction word address to be
more than one level away from the data.

If a word of memory is a pointer to a pointer, rather than a
pointer to the data, then a bit of the memory word is set to
indicate this (bit 31).

In addition to the IR~register, there is also a register with
identical contents except during indirect addressing, the
displacement register D. This register is the input to the
address arithmetic in use during a memory reference instruction
with the bits used as follows:

Bits 31—20: Not added in the X, B and D adder

Bits 19-12: Added only during second indirect address cal-
culation

Bits 11-0: Always added in a memory reference instruction
address calculation

If bit 31 — O in the IR—register, only bits 11—0 in the D-
register are added in the X, B and D adder during the first
indirect address calculation.

If bit 31 in the now calculated address is a 1, a new level
of indirect addressing is inserted.

Up to 16 levels of indirect addressing is possible. More
levels will cause INSTRUCTION HANG-UP interrupt.

Bit 31 equals one in the calculated address means that the
contents of this cell is used to calculate the next indirect
address.

Bit 31 equals zero indicates the last level of indirect
addressing and the contents of this cell is the operand
address.

In both cases, the 20 lower bits are clocked into the D-
register.

ND—05.007.0l

III-7-7

Bits 31-23 are clocked into the IR-register while bits
22—12 in IR are kept unchanged. This is done to avoid
destroying the function code and the register involved
in the instruction.

Indirect addressing inserts an extra indirect cycle (Cl)
and each level of indirect addressing adds one ”read in-
struction time" to the execution time.

ND—OS.OO7.0l

111-7—8

lNBfii‘R‘ECT ADD RESS! NG

1R 35313759:

D (0-4096)

f

X, 8+0
CA _. 1. indire'ct

address

1—.-

calculation

DISPLACEMENT REG|STEHz
A

0

D (0-4096)

MEWRY:
3NDIRECT ADDRESS FORMAT:

U

Displacement (0-1048 576)

m REGISTE |
23 22 1 17 1 11 0

” I]////

f FC R j
Notused

/

" 01111111 111/11/
“—v—JV—xfi“

(X)+(B)
. CA

2. indirect address
I I ‘X, 3+0 calculation

DISPLACEMENT REGtsTER: , r V ‘

31 _ , 1 fl. 0
i

D (0-1048 576)

If bit 31was =1: Next indirect operand address
‘7

If bit 31 was = O: Operand address

Not added in X, B + D adder in first indirect address cadculation

These bits in IR are kept unchanged

Figure mm.

DID-05.007 .01

111.7.2

III-7-9

INTER-REGISTER INSTRUCTIONS

The inter—register instructions have in common that both
operands are taken from the registers, called source re-
gister A and source register B and the result is written
back into a third register, the destination register.

The 23 inter~register instructions are three-address
instructions containing three 6-bit register addresses:
two source registers holding operands A and B respectively,
and a destination register.

As indicated in figure 111.7.3, the register block A is
selected and latched in the A operand latch, while register
block B is selected and latched in the B operand latch.

As A operand the Overflow Register OR and Remainder Register
RR may also be selected.

In the following, all the inter-register instructions are
listed with information on the hardware execution of the
instruction in the CPU ALU.

ND—OS.OO7.01

111-7-10

HmumHmmH

coHumCHumm©

ouQH

CwupHM3

Nommm

musmudo

DHQ

®£B

OMmm

o

H

H

H

o

o

mOHmN

pwH®®M

cOHpmcHUmmw

umm

mNm

m
+
a

o

H

o

H

H

H

mmm

23338

do

HmHmHmmm

mmom

m
+

m

o

H

o

o

H

0

4mm

usmHmeoo

.mo

333%

«mom

m
+
a

o

H

H

o

H

H

mo

HmumHmmm

mom

m$w<

o

H

o

H

H

o

mmm

.Hmeoo

.mo

m>HmsHoxm

HmumHowm

moxm

miwm

o

H

o

H

H

0

4mm

.Hmaoo

~mo

9/3388

“339%

«oxm

m

Jpn/H

o

H

H

o

o

H

mo

33388

kmHmwm

oxm

m
.

<

o

H

H

H

o

H

mmm

pcmEmHmEoo

.s

HmumHmmm

mozm

m
.

M

o

H

H

o

o

o

«Mm

ucmEmHmEoo

KQZHH

umpmHmwm

«02%

m
.
a

o

H

H

H

H

o

92

“338m

ozm

"mZOHBODMBwZH

UHOQH

coapocsw

mm

ml<

mm>Hm

.wnumo

Umouow

Qq

Hlmlm

H\o

o

O

H

H

o

uomapnzm

MmumHmmm

mmm

m|m

Hmscmz

mocwummmm

mwm

H

mmmH

so

mmcwmmw

wMHmo

Umugow

wQB

m+<

H\o

o

H

o

o

H

wwm

HmumHmwm

Q<m

"moBUDMBMZH

UHHmsHm<

22

£985

uomfim
m

@cmuwmozm

mHom

H

o

H

H

H

H

mo

Ho

mm

A:
m

920m

Dwm

QOSOHSH

#Umvhfimu

AMO

HO

mmv

UCMHWQQIfl

mHDHM

H

O

H

H

H

H

m

Hmumflmwm

Al

kmflmmH

m0

.HO

mm

ZHm

umZOHHUDmBmZH

mMMmZ@mB

«Ema

....................

tiiiiiilx-mmmwmmmw-Immmmwidmwmlidmwim--ml-Him-----l}:i-12:---il-!immmmmmmwmm

amo

.Mucoo

mm

womHmm

Umohom

wwoz

COHMUQSM

”ZOHB¢mmmO

DHm

mZOHEUDmEmZH

mmEmHUQMImMBZH

ND-05.007.0l

111-7—11

q

oHomupmucmw>Huummwm

mm

MH
/.

m>Huomwww

am

mH

wwxuwzu

DH¢

mo

udauso

ommm

m£H

m>Huomwmw

mm

mH

wmxumco

DH<

mo

”sauna

Hammv

HHm

om

mge

m>fluumwwm

aflxm
W“

unm30

24<
we

Damage

omwN

use

m>Huummmw

Qm

wH

wwxomsu

DH<

we

“amuse

HHmmv

HHm

zoqm

may

”mZOHEUDMEmZH

MUZMDOMW

HQZOHBHDZOUmucEoo

m+<m+<m+<n+4mcmoz

OOOmwo%Hpmowmopom

OC).uucoowas:

H

H

o

H

H

o

H

H

o

H

H

o

o

o

H

o

o

H

o

o

H

o

o

H

N

H

o

m;

uuaHmm:cmuccsm

ox

uHSmmp

MH

Qm

“Hmumwwmp

wompupam

on

uHSmmu

HH

Qm

.mumumHmmu

uuwnunam

ov

uHsmmu

mH

am

.muwumHmup

uumuupsm

cm

ufismwp
NH

amxm

"mgmummu

uowpundm

ox

qmmp

WH

Qm

”mumumwp

ww<

on

qmmu

HH

QHJm

“mumumop

wn<

0v

UHsmmu

HH

am

AmpmumHmwu

ww<

om

MHSm

mH

am

“mhuumHmmp

vv<

mamcammqmmomHm<Om<

”ZOHE<MHQO

3H4

mZOHBUDmEmZH

KHEmHOHm

MMEZH

ND-05.007.01

[11—7—12

H

H
H
o
o

mcHHmcHH

4x

poxLHaH

QOHH

.CHH

H

H

H

o

o

HmmGHCHuwvcsom

‘umcHHmo

amHH

aH

H

H

H

o

o

HmwcH

xcHHmo

mm

“xHH

H

H

H

o

o

HmmHo

HHm

Hum

H

H
H
o
o

HcmgmHao

HHm

zum

H

‘H

H

o

o

Haw

“Hm

Hmm

H

H

H

o

o

HHHLm

H<QHQOH

Hmo

aHmm

aHmm

H

H

H

o

o

HHHLm

H<oHo0H

HHHH

QHHm

.HHm

H

H

H

o

o

HHHLm

oHemzmeHm<

HmuHm

o<mm

.<mw

H

H

H

o

o

HHHHw

oHamzmHHm<

HmmH

Q<Hm

,<Hm

Am

mam
<

xuo

HmumHmmmv

kmmm

coHumcHHmmm

OH

xumn

H

H

H

o

o

umHsm

Hmm

swuuHHB

HHSm

can

woudooxm

coHuuduum

.wmm

mHLjomnpmumwwwm

QMMm

”MMm

|GH

.UHUwELuHHw

Hmcumuxm

Du
<

xuoHn

DH<

Dmo

mo

Hmumwm

mnu

Eouw

uso

vamp

vampumo

unguno

OHmN

H

H

H

o

o

“wwflm

EMMA

.wwm

msom

“HmHWmm

omHm

amHm

umoeobmamZH

oeaqHzaz

«Ema

nu‘lxl;nz:[|xxau;l‘{x;:-uzlu'qluxummmmmamm:ulylll[xlmmmmm11‘nulmwmuxuulxuulmulw:iwulm

uuuuuuuuuuuuuuuuuuuuuuuuuu

mmwmmmwwmmw

.Hucoo

mm

HomHmm

mvoz

CoHuUCSm

"5A4

Dav

mmB

UZHmD

B
0
Z

mZOHBUDmBmZH

mMEmmm

mmBZH

nf\‘7INC\Yh

III~7*13

q

mHoxu

Hmucm

Dmo

mam

Dmo

OH

ucmm

cm

mHMm

mw>Huummwm

mHMm

WH

.UHHmELuHHm

cywuxw

SH

Umxuwcu

HHm

q

mHu%o

Hmq

:mo

mam

Duo

ou

ucmm

Hmcm

mHMw

mw>Huumwmm

mHMm

MH

.oN

wcHumo

udmwm

wmxumcu

0*

«on

UHDmmm

.HHD

:m

Hmcwm

@mxumfiu

0v

«GA

“Hammm

.oHumEnuHHm

HQEHMm

CH

muow

uumgup:m\wvm

wcHumo

“mZOHBUDMEmZH

MUZMDOmm

QdZOHEHQZOU

kmQMIcoHumcHumma

ago

:H

xumg

amHUHH3

UHammm

.UHHQELHHHQ

Hmspmuxm

CH

@musumxm

m:owuu:HHmcH

HmZOHEUDmBmZH

UHBQEEEHm<

HHHHHHHHHHHHHHH

3H4

Dmo

mo

uamuso

OHwN

H

wzmoz

cm;.Hucoocz

H
H
o
o

H
H
o
o

H
H
o
o

H
H
o
o

H
H
o
o

H
H
o
o

H
H
o
o

H
H
o
o

H
H
o
o

H
H
o
o

H
H
o
o

H
H
o
o

H
H
c
o

H
H
o
o

H
H
o
o

H
H
o
o

H

m;llmsn

mH

HuaHmm

:3HH

9::e
HQjNDQUMabwgfim:

mzo
HHo

mHHm

HHm

0mm

camw
so

HHHm

HHH

Nmm

ow

HHsm
wH

am

Qm2<

nEH?»

on

uHsmmH
HH

QHHm

omm<

Humm¢

oV

HHsmmH
HH

QHHm

QHH<

“HHm<

om

HHSmmH

HH

am

.wwm

HmumHmmm

cam
mm

omm<

“Hom<

0*

HHsmoH
HH

am

Ham

.Hpm

on

qmmH

HH

mm

QMm

ammm

0v

HHsmmH
HH

QHHm

QHm

“HHm

ON

UHDmmH

wH

mflxm

Huumuufidm

kmmm

9mm

“Mm

m

nmom

mvH>Hm

mam

.mm

amom

.Hmm

HHHHHHse

QHH

,mm

omzm

.ozm

HomHHasm

mam

.HH

mmmm

“Hmm

vww

2mm

kmwu

coHuwHQ

mH£SOUH©wm

HHHH

HmHmHmmH

mcHHmo

2H<m

.H<m

mvH>Hv

HmHmHmmm

>am

hHmHuHDE

kmHmmm

DEM

B
0
Z

mZOHBUDmEmZH

KHEwHUmm

mmEZH

ND—OS.OO7.01

III~7-14

mmw

.

.

.

e

m

n
_
#
H

0‘

ww.

.H.H.H.H.H.H...H...HHU

OmmN

3:71

A

.H.

Bauflwm

i

m

1/;

.U”

\\

m

yoOJmnn

xx

:83

$5.8m»

/

u.-

/

589mm

35
«mun

23m

<

.

wwwwfihmwkfi

OZ<mwmnYm

Enm

out;

I
1

IL

\

IO

.Omm

P43mmm

\

>>OJmmw>O

\xxxj

\

lllllllllllllllll
J

~

1

«0”

w
A...

_

ll

.

_
fl

_

mm

0mm

32

55m

9:

m;

otmEiCm

_
_

M

mmoz_<§mm

2.3858:

Eoi

_

_

w
“

o_kw21k_m<.h<2mm.—.s

_

52m».

_FYIIIIIIIIIIIIIIIIIHML

.owoflmm

FXw

OZ<mmmOym

QZ<¢mmOLQ

DZ<mm&O.<

23m

<

XOOJm

«02mm

coBoczu

mwkmfivmm
33

mm

Yawn.

mmé

9mm

k
$30000

m

om

533mm

<

x005

533mm

.mmm

830m

Ummm

.mmm

wenow

Umom

Enw

8.55

2000

cosoczm

\f

xtlllllllllkfllll'J

mo

0

cum

0

m‘w:

mZO_PUDuZ_mmFm_m.m—m:r2_

.

.

i

V.

m0“.

>>OII

<F<Q

.o

m
w

i
9

m:
mF

mm
mm

cm
5

ND-05.007.01

111.7.3

Ill~7-lS

ARGUMENT INSTRUCTIONS

The Argument Instructions have in common that one of the
operands (operand B) is taken from the instruction itself

(Bits O~15) and the other operand is taken from the Rew
gister Block A, specified by bits 23-28 in the Instruction
Register.

The result or SUM is written back to the same register
given by bits 23—28 in the IR-register in both the Register
Block A and Register Block B (X and B if register address
0—15).

The 16 most significant bits in the B-operand are always
set to zero.

In the following, all the argument instructions are listed
with information on the hardware execution of the instruction
in the CPU ALU.

ND-05.007.0l

111—7-16

T

mHuxukzw

m

mm

HH

m

gHmm

HH

maxumzv

2H4

Ho

unausc

Om

wszH

m

AHMm

HH

wwxumzu

DH<

we

unguzo

AHmmV

UHm

om

mzH

q

mHQHU

.m

mm
HA

wexumsu

24<

Hmucm

mo

unmade

OMMN

wLH

mHMm
HH

.mmw

mm
HA

nexuwpo

DH<
Ho

“gauze

HHmmv

“Hm

om

msa

"mZOHBUDMBmZH

MUZQDOmm

HQZOHBHQZOU

.wwm

wmuuwHom

OH

Hom<lv

ml

”%Mymu

mHCH

LUHB

Afimuomm
o

.wmmv

OMMN

Cu

umm

wH

wcmQOI<

use

muumHmw
o

.wwmv

ommm

Ou

“mm

mH

ncmwwm0I<

mLH

"mZOHBUDmBmZH

ZOHEflHDmHZ¢Z

<B<Q

"mZOHBUDmBmZH

UHQOH

wmm

Eouw

vmuomwuLSm

ucmESwu<

"zuumo

wmupow

Lq

umZOHBUDmBmZH

UHBmZEBHm<

m+<m+<m+<m+<

HIHI
ImI

.T
Iml

HI
ImI
< <”Hlml<m+<mw<m+<m.<HImI<m+<

r—(r—Ir—4r‘4O O Owwupom

r—l.uusoowwoz

r—(r—‘r—{r—I‘O O O O1—!

o

o

H

O

O

H

o

o

H

o

o

H

H

H

o

H

H

o

H

H

o

H

H

o

H

H

o

o

o

H

o

o

H

o

H

H

H

H

o

H

H

o

o

o

H

N

H

0

mm

uumHmmCOHuucsm

mp<Ix

wmm
HH

mm

mmg

wH<In

wmm

mH

mm

NmQ

mp<lv

wmm

HH

HHMm

2mm

wu<

wmm

HH

mm

mmo

wp<x

mmm
HH

mHmm

mag

wu<n

wwm

HH

mHMm

NQQ

mp<v

wmm
HM

mm

zen

wp<A

mmm

HH

mm

Ham

Hmumwm

Ou

wwfi

MO

qEQHQEOU

umm

<Oum

umumflmmm

cu

.mu<

umm

<Hmm

pwumHmmm

mam

mu<

mo

m>Hw2Hoxm

<mox

pmpmHmmm

cam

.wu<
mo

<mo

“mumfimmm

mam

.wp<

Qz<

<mz<

umummm
cu

qEDwM¢

we

ucwEmHmEou

ww<

¢oo¢

“mummm
8

29:s

2%

$54Immmmmmmum

"ZOHfidmmmO

DH<

ZOHEUDMBmZH

BsDwm<

Loyoflwm

Ezm

6.0mm

PEN
0“
«8
fl

eméw

:m

A_

q.N.HHH

muswflm

579

:m

acmEmQ

III-7’17

mZOCxoDmZ“

PZwEDOm/x

2/q

<F<Q

\

w

W/
,V

__
mm

Mm

_
K
__

\xooflm

Bumam

£054

_

\

\

Louomam

_

\\\\

\

_

\

_

:&&@\
iffi
/

DZ<mO‘m

Sun:

3363“.

mut>>

5
n

Ucfmno.<

ummv

En:

Lmumwmom

Umom

<OmN

Ill/

%

.

%

a

.

\

v

w

NW

.4

xoBm

qzw
.\

m

//

\

///

Alli

35
W

.354

mm.
o

Suflm
3.“

,.\.

Louuflmm

V//

!

(GEN

OZ<mmmOLQ

AIDV

Swflmwm

mat;

Momm

*

mwOOOwD

b

11F)

///////
////////

//

////////////%///A

k2m230m<

on?

0

mm

X

um<

fl

//M//////

,////

é/
//

9

9

3

M:

Q

mm

mm

mm

cm

5,

.‘mént

ND-OS.OO7.01

111.8

111*8-1

INSTRUCTION EXECUTE SEQUENCE

In parallel with executing the instruction in the Instruction
Register IR, the next instruction in hte program (PC+l) is
requested and written into the NEXT INSTRUCTION register NI.

By implementing this instruction pre-fetch feature, the
waiting time for memory reply is utilized to execute the
instruction in the instruction register. When the instruction
execution is finished, the next instruction register is trans—
ferred to the lR—register. This is the way inter-register and
argument instructions are executed.

When executing a memory reference instruction, the CPU will
be busy calculating the memory operand address (CA) for the
instruction in IR, while the next instruction is fetched and

clocked into the NI register. When this memory sequence is
finished, the memory read or write reference in calculated
address can take place.

SPECIAL CASES

The normal execute sequence is to transfer the NI-register to

the IR-register and start execution. But the instruction in
the Nl-register may not be the one to be executed next. This
is the situation in the cases mentioned below:

1. At START-UP time

2. Executing a sequence instruction
Transferring program execution from the current location
to some other location in memory

3. Executing a remote execute (EXC) instruction

1. When NORD*50 stops, the NI-register will be equal to the
instruction following the last executed instruction.

At START—UP time, a new instruction must be fetched,
pointed to by the Start Address (SA). This instruction
is clocked into the NI-register and further to the IR—
register.

A special cycle (DCA) takes care of reading the contents
of the program counter = SA to the NI—register and next
cycle DCO will transfer NI to IR and the execution can
start.

ND~OS.OO7.01

III—8‘2

During a jump, conditional jump or skip, where the
jump or skip condition is fulfilled, the NI—instruc~
tion is not the one to be executed next.

IR = JUMP or CONDITIONAL JUMP

The program counter is parallel loaded with the cal~
culated address from the address arithmetic. The same
DC4 cycle is entered and the PC—address is fetched and
clocked into the NI-register.

IR = SKIP

The program counter is incremented by one pointing two
instructions ahead of the instruction in IR. The same
D04 is entered fetching the new instruction.

The input to the IR—register consists of a 3~line
to l-line selector. The first line is the Nl—re~
gister and the two remaining lines are in use while
executing a remote execute instruction.

IR = Remote Execute (EXR)

If the register field equals zero, this means:
execute contents of calculated address as instruction.

The instruction in the calculated address is fetched
and placed directly in the IR—register via the memory
data line MDC.

If the register field equals one, this means:
execute the calculated address as instruction. The
calculated address is fed directly to the IR—register
via the memory address line MAC.

ND-05.007.01

111-8-3

N - 50 MEMORY SEQUENCE

MEMORY DATA fl

CALCULATED
ADR-—>PC
IF JUMP
EFFECTIVE

Figure 111.8.1

ARITH-
METIC

'ADDREssi

CALCULATED
OPERAND
ADR.

CELECT

PROGRAM

——~————#-D PC

LOAD

ND-05.007.01

COUNTER §

(NEXT INSTRUCTION FETCH
OR SKIP EFFECTIVE)

III—8‘4

wsow

cw£3

%Hmmu

wdmm.Mwm

wmumadoamo

Eoum\ou

mumm

ucmummo

wwmu

Ho

muflua

zwmwm

mumm

cmLB

%Hamu

@cmmkpoEmE

dfl

soauuswuwdfl

uxmzH+om

mo

pamucou

udo

wmmm

o.w.HHH

emanam

MHAEIHZ

cmfiu

>mozmz

vmfimflaflw

cmnB

.o

wmmu

wcmumao

muoBmE

suHB

coaudumxm

ugmum

.m

_

mHHmz
“fl

m

1,

wmamflcfim

wm<mm

m

‘WcOHunomxm
.m

_

MHAT|HZ

_

_

dmzu

*

#

wwsmflcflm

_

_

Gofiudumxm

.m_

mo<

H
.18

omtlla+um

wo<mm

“

Hmumflwmlz.m£u

oucfi

_

a

maa

xmc

uo

.

<H<Q

_

7030

3

.
u

x

Ho

q

_

~

_

_

_

_

J

u

H

An

ucm

maxv

.

_

.mmulmH

we

_

coflu_

pamucou

mo

_

nudyumcfi

mu:u_.uwm

vamummo

~

Imxm

ugmum

.m_wumanuamu

.m

fl

oz

_

mmw

_

Q<mm

«EAT!(H+om

_

wuummfl

woamummmu

hwoamz

0mm

%HoEmE

cfi

M

.uumca

uc

noumm

.N

defluuduumdfi

ovoomm

.N

AH+umV<z

.

~

.wqHZ.mo

ucmusoo

LuMB

AmmHV

“mumfiwmhlmH

Macao

.H

:mu
om

I
z

ND-05.007.01

111.9

III—9‘1

NORD-SO MAIN STATES

The NORD—SO main states are determined by three
flip-flops located on the CYCLE COUNTER card 1506;

DCCO, DCCI and DCCZ, also called the cycle counter

flip~flops.

The state of the flip-flops is decoded on the 1519
card and gives the implemented cycles listed below:

DCCO DCCl DCCZ CYCLE

0 O O DCO
l O O DCl
O 1 O DCZ
1 1 O DC3
0 0 1 DCA
1 1 1 DC7

The basic machine cycles in NORD-SO are:

DCO: First cycle of instruction execution.
Memory reference instruction:
Execution/operand fetch cycle.

Inter—register or argument instructions:
execute cycle

DCl: Indirect address cycle

DCZ: Instruction execute if memory reference
instruction

DC3: Instruction execute for instructions with
two data references in memory

DCA: Instruction readout to next instruction
regiSter (N1) in start sequence, in skip
instruction effective or jump instruction
effective.

DC7: Stop Cycle

Data may be transferred to/from NORD‘SO com-
munication registers via the NORD-IO I/O

system.

Each time the clock pulse DCCS arrive the output of the

NEXT CYCLE DECISION LOGIC will be clocked into the DCCOrZ

flip—flops. This implies that clocking the same
information once more will extend the cycle for one clock

period.

ND—05.007.01

During multi—level indirect, for instance, the lines
containing 001 (the input to DCC2 = 0, input to DCCl
= 0 and input to DCCO = 1), may be clocked up to 15
times.

The cycle will be terminated and a new cycle entered
(or the same cycle extended) at WP time, equal to
the time new information in written into the CPU
register block either from CPU ALU or from external
arithmetic.

Cycle DC7, the STOP cycle may be entered in two ways:

A) Presenting a ground level on the MASTER CLEAR
(MCL) line to the clear input of the DCCO-Z
flip-flops.

The MCP signal generated on the 1519 card is a
programmed MASTER CLEAR pulse which occurs when
bit 9 in the modus register is set. Used to put
NORD—SO into a well~defined state.

B) Forcing the NC7 signal (Next Cycle DC7) to a
ground level, the NAND gates output will be all
ones and at the next arriving DCCS pulse, DC7
will be entered.

The ND7 signal will force the cycle flip—flops to
DC7 at the first arriving DCCS clock pulse in the
following cases:

1. Protect Violation
The requested address was protected by the BP
and BQ address limits.

Hardware:
ABPBQ signal generated on the 1504 card. Status
bit 1 set to a one.

2. External stop from NORD-lO
Executing an IOX NORSO instruction and A = 10
in NORD-lO, the NORD-SO will enter cycle DC7.

3. STOP instruction executed in NORD—SO

4. Parity error of modus bit 2 is set; detected on
the 1504 card.

ND-05.007.01

III-9~3

5. Overflow detected in external arithmetic Sensed

and modus bit 0 set (OFL = 8B3) at RYX
time on

6. Underflow detected in external arithmetic 1504

and modus bit 1 set (UFL = SEA)

7. Instruction hang—up
More than 15 levels of indirect addressing or
execute of EXC instruction (counted on the
1510 card).

Input to the NEXT CYCLE DECISION LOGIC is information

about current cycle DCO-DC7 and IR function code bits

informing what cycle to go through executing the instruction.

An active JEFF signal (jump or skip effective) will
force the NEXT CYCLE DECISION LOGIC to present 100

on the input lines to the DCCO-Z flip—flops, entering
cycle DC4 for instruction readout to NI.

The JUMP OR SKIP CONDITION FULFILLED logic has this

input in addition to the IR function code bits:

ZERO (CPU ALU Output equal to zero)
831 (CPU ALU sign~bit output)
FRSBIT . . . _
SELBIT

} Prom external arithmetic (C rack)

These signals are checked against the IR bits if the
jump or skip conditions are fulfilled.

ND—OS.OO7.0I

111~9-4

mp
Humcum

A¥l

mmaooma

u

.fl.m.flmhfl

,wmazwuwpm

HmCMmgxw

Eouw

mcompflvcou

maxm1l11!1\/|I!IIJ

Hnmm

BHmmMm

+
N

magghmgqamogHazoo

gyxm
mo

mamaQHOOA

mHHm

mmou

ZOHHUZDm

MH

3

who:pmmfiu

muua

eflomu

xucmc

uxmc

O

4

com“

AIPNU7

.

a

\AATA?

Noun

m>HHummgm

gflxm

mo

gzsn

filllll

_

mhmd

EMMIIA

H
fl

_uoa

gave;

5!.

moo

omHumamqowoexmz

I?

«on

mm

[my

mom

x»:

moo

H

Av.

Hum

.

sun

can

ovum

mma<o

mz<z

”mmogm

mHgm

mme<em

2H4:

UHUOQ

MB<Bm

ZH<E

Omlomoz

w
u

a
b

Hmm

24<3&0Zomx

“uzflxommo

1!:

camx

ND-05.007.01

III

Next

Figure

conte
of DDC at
DCCS -Cime
(1506 card)

Ill .9. 2

III-9*5

CONTINUE TO NEXT CYCLE

JUMP EFF

INDIRECT JUMP EFF

SKIP EFF

RESULT OF MIN = 0

NEXT INST

STOP

REGISTER SKIP EFF

STOP CYCLE
Start from N-IO

NEW INSTR. FETCH -vNI

IF START SEQUENCE,
SKIP OR JUMP INSTR. EFF

Execute Integreg. and
Argument Instr.

0 INDIRECT ADR. CYCLE
(IND.ADR)—4>IR and D

INSTR. EXECUTE IF MEMORY
REF INSTR.

INSTR. EXECUTE IF 2 MEMORY

REF. INSTR.

To fetch new~instruction

Way back to execute
NEXT INSTRUCTION

MAIN STATE DIAGRA?

ND-OS.OO7.0I

III.9.l

III-9—6

CYCLES INVOLVED EXECUTING A MEMORY REFERENCE INSTRUCTION

Underlined: Instruction fetch

Normal type: Instruction execution

DC7: STOP CYCLE

D04:

DCO:

NlO/NSO communication is active to load start
address to SA, break addresses to BP and BQ
and break conditions to modus register M.

Activate N50 by SAAA; IOX NORSO.

SA to program counter PC Via the memory address
bus MAC. Request instruction pointed to by PC.

A simulated Data Ready signal (DRS) is generated
to change cycle to DC4.

INSTRUCTION TO NEXT INSTRUCTION REGISTER (NI)
CYCLE

As Address Ready (AR) from memory aBpear:
PC + l -—>PC. Request instruction now pointed
to by PC (next instruction).

At Data Ready (DR) time: Data now ready equals
instruction requested in DC7. Clock instruction
to N1 register (NISl).

Change cycle to DCO.

EXECUTE AND MEMORY OPERAND READ/WRITE CYCLE

NI —%Instruction Register IR (IRS)

Calculate operand address CA.

Memory write instructionzx Memory read instruction
x or Indirect addIESS”
x ing:

Execute instruction in x
IR. Enable result to x
memory data bus (MDC). x

At AR time:
PC + 1 -9PC (PC is now 2 ahead of executing
instruction).

Request calculated address CA.

ND—OS.OO7.01

DCl:

DC2:

Lil")"/

At DR time:
Clock next instruction requested in DC4 ——)Nl.

Enter cycle DC2 x Indirect ? enter DCl
x otherwise DC2.
x

INDIRECT ADDRESS CYCLE

At DR time:

Clock data = indirect address into IR and dis-
placement register D.

IR31 = 1 X
x

YES (Multilevel indirect)x NO
x

Request calculated address.

Extend DCl——— Enter cycle DC2.
DC2 x if two data
references in memory.
DC2 if one data
reference in memory.><><><><><

INSTRUCTION EXECUTE CYCLE
(ONE DATA REFERENCE)

At DR time:
Request instruction now pointed to by PC.

Memory Write Instruction x Memory Read Instruction:

Instruction finished Latch operand on
data bus into B operand
latch.

Execute instruction in
CPU ALU or external
arithmetic.

xxxxxxxxx

At delayed DR time:

Write result into
destination register
if result from CPU f
ALU, enter DCO.

Enter cycle DCO

><><><><

X If SKIP or JUMP effective
enter DCA to fetch new

x instruction to N1.
><

ND—05.007.0l

DC3:

111-9—8

Instruction executed
in external arithmetic:
At External Data Ready
(RYX) time:

Write result to destinr
ation register, enter
cycle DCO.XXXXXXNX

INSTRUCTION EXECUTE CYCLE
(TWO DATA REFERENCES)

At DR time:
Request CA address if: MIN,XMR or ADM.
Request CA + 1 address if floating double (FD)
instruction.

Memory Write: Memory Read:

latch operand read in
B latch if MIN, XMR or
ADM.

First operand written if
FD

Latch first operand
(Bit 63-32) if FD
instruction.><><><><X><><><><><

At delayed DR time:
x Write first operand to
x FD register if LDD.

Enter cycle DC3.

INSTRUCTION EXECUTION SECOND CYCLE

At DR time:
Request instruction now pointed to by PC.

Memory Write: x Memory Read:
X

MIN, XMR and ADM, x
operand written x

x
Second FD operand x Latch second operand
written. x (Bit 31-0) if FD

x instruction.

At delayed DR time:
x Write second operand
x to FD register if LDD

ND-05.007.0l

111—9-9

Enter cycle DCO.

If MIN skip effective enter cycle DC4 to fetch
new instruction to NI.

Enter DCO at external
ready time if
instruction executed
in external arithmeticN

N
X
N

Mh_nR nn7 01

III.9.2

III~9~10

CYCLES INVOLVED EXECUTION AN INTER-REGISTER OR
ARGUMENT INSTRUCTION

Underlined: Instruction Fetch

Normal types: Instruction execution

DC7:

DC4:

STOP CYCLE

NORD—lO/NORD—SO communication is active to load start
address to SA, break addresses to BF and BQ and break
conditions to MODUS register M. Active NORD~50 by
SAA a; 10x NORSO.

SA to Program Counter PC Via the memory address bus
MAC. Request instruction pointed to by PC.

A simulated Data Ready Signal (DRS) is generated to
change cycle to DCA.

INSTRUCTION TO NEXT INSTRUCTION ON REGISTER (NI) CYCLE

As Address Ready (AR) from memory appear:
PC + 1‘~+-PC. Request instruction now pointed to by
PC (next instruction).

At Data Ready (DR) time:
Data now ready equal instruction requested in DC7.
Clock instruction to N1 register (NISl).

Change cycle to DCO.

\Tn..n¢: nfi'7 n1

DCO:

A

III—9‘11

INSTRUCTION EXECUTE CYCLE

NI “9,1nstruction Register IR by the NIS signal.

Instruction in IR executed and result written back

to destination register DR.

At AR time:

PC + l ——>PC (PC is now 2 ahead of executing
instruction). Request ‘inStruotion now éoifited
to by PC.

L

At DR time:

Clock next instruction requested in DCA —4>NI
Extend

DCO.:]

If instruction executed in external arithmetic

the DCO is extended until external ready (RYX)

arrives.

At RYX time:

Write result to destination register.
Extend

DCO.::]

If SKIP condition tested in CPU and skip

condition found satisfied, enter DCA, other-

wise extend DCO.

If SKIP instruction tested in external arithmetic

and SKIP condition found satisfied, enter DCA at

external ready time (RYX).

ND—05.007.0l

ill-10

lII*lO-l

TIMING SEQUENCE

Each basic cycle in NORD~50 where instructions are
executed has two phases, the read and the write phase.
Decoded on the 1519 card and named DCRO ~ DCR3 (Read
phase cycle DCO — 3) and DCWO - DCW3 (Write phase cycle
DCO ~ 3).

During the READ phase of cycle DCO the operands
are read from the register in the register block
given in the source address field and Clocked into the
operand latches.

During the READ phase of cycle DCZ the Operand is
read from memory and clocked into the operand latches.

When the operands have been latched, the phase can
be changed to write. During an interregister or
argument instruction execution in cycle DCO, the re-
gister address is changed to destination address for
both register blocks (At SP time on 1519). At the
register WRlTE pulse the output of the ALU is written
into both register blocks.

For a memory reference instruction the write phase
of DC2 will be used to write the result to the re-
gister if the register was the destination or back
to memory 1f memory was the destination.

READ PHASE WRlTE PHASE

«dF~—————————a>~q I»

CYCLE: I I

CPU ALU
<1 i.—

EXECUTTON

WRITE PULSE
M

ND-05.007.01

III-ll—l

111,1,1 MEMORY PROTECT SYSTEM

The heart of the memory protect system in NORD-SO is
the address limit registers BP and BQ.

BP 2 Break Point Register N0. 1 (20 bits)
Lower address limit, and

HBQ Break Point Register No. 2 (20 bits)
Upper address limit

N—SO
MEMORY: Address 0

//» ///:/// //<;<Z?é/

BP Lower limit

BQ Upper limit

Max. Address

The BF and BQ register can be used to protect either
the memory area bounded by the addresses within the
two registers,or the memory area outside these bounds
against any of the following:

'All accesses

'Instruction fetches

OData read and write

OData write only

The break conditions are given in the following bits
in the modus register:

ND’OS.OO7.01

III-ll-Z

MODUS xwv
BIT NO.: 4 Stop if BPSEAny Reference <BQ

5

6

7

8

Stop if BPS Program Counter <BQ

Stop if BPS Data Reference <BQ

Stop if BPS Data Store Reference <BQ

Invert limit on bit 4-7:

Stop if 052(<BP
or

BQ 5x <Max. address

The address lines MAC to memory have two sources
(the third is used for start-up) selected thrOugh
on the 1501 card.

1 Program Counter ZSelected when instruc-
tion fetch

2 The Address Arithmetic ZSelected when reading
or writing memory
operand address

The memory address lines MAC are continously compared
against the BP and B0 registers on the 1501 card.
The result of this comparison is the signals

LBP 20
LBQ 20

Referred address less than BP and

Referred address less than BQ

These signals are fed to the 1504 card.

0n the 1504 card these signals are checked against
the stop-conditions given in modus bits 4-7.

If modus bit 8 is set, the LBP 20 and LBQ 20 signal
is inverted before checking.

The result of this comparison (the signal ABPBQ)
is then used to decide whether a request can be sent
to memory or not.

If the address points to the protected area, the
request will be blocked. NORD‘SO will be stopped,
entering cycle DC7 by the NC7 signal, and as a re-
sponse to that a completion signal is sent to the
NORD-lO.

ND*05.007.01

111*11‘3

Status bit 1 will be set, and the TA register will

hold the address that caused the stop.

To compare the memory address against E? and BQ takes

time, approximate 90 nsec.

The request will be delayed for 100 ns to be sure

that the address is legal. This is done by the IPROT

signal on the 1519 card, which will extend the cycle

where the request is initiated for 100 ns.

Modus bit 4
M4 = l : A
(All references) : All memory references will be

checked.
All cycles will be delayed.

M5 = 1
(Instruction fetch) : All cycles where the program

counter is selected to the
MAC bus is delayed.

M6 = 1
(Data read and write): All memory reference instruc-

tions execute cycles where the
address arithmetic is selected
to the MAC bus is delayed.

M7 = 1
(Data write) : As for M6 but only memory

reference instructions exe-
cute cycles where memory is
destination is delayed.

ND-05.007.0l

Ill.ll.l

III—ll-h

PROTECT ADDRESS SETTING

Because of the NORD—SO instruction prefetching, the following
is to be considered:

Assume that the break condition for INSTRUCTION FETCH is set
in the MODUS register. The lower break address register BP
is set, and in the location before the BP-address an in—
struction is to be executed.

Because of the prefetch, the execution of this instruction will
generate an address violation interrupt.

llllllll

BP-address
RTJ

limit NO INSTRUCTION
FETCH
PERMITTED

The rule is thus:
The last location before an address limit must not contain an
instruction to be executed.

This is the case if the protect—mode is

1. All references
2. Instruction fetch

ND—O§.007.0l

111.12

111-12—1

CPU AND MEMORY OPERANDS TO EXTERNAL ARlTHMETIC

The operands to the external arithmetic are selected through

two selectors in CPU, each selecting 32 bits (2 x 4 bits on

each 1502 card).

The operands are latched in the operand latches and driven

by a tri—state driver to the external arithmetic.

The operands may either be 32 bits (for instance Floating Add

Single Precision) where only one operand selector/latch/driver
is enabled, or 64 bits where both the operand selector/latch/

driver operates with 64 bits in parallel.

Memory Reference Instructions

A memory reference instruction using the external arithmetic
(FAD, FSB, FMU ...) will read one operand (the B-operand)

from the calculated address on the MB-lines from memory and

select it through the darkened part of the B—operand selector.

Refer to figure 111.12.l.

The A-operand selector will have its input from the register
block A, and only a 2-input selector is used.

A floating double precision operand is stored in memory in

two consecutive locations.

During a double precision floating memory reference instruc—
tion, the 32 most significant bits are read from the cal-
culated address and latched in the operand latch (bits
32-63) by the STRBZ pulse.

An extra cycle is entered to read the least significant
operand bits (bits 0—31) from the CA+l location, select them

through the operand selector and latch them in the operand

latch by the STRBl pulse.

The 64 operand bits can then be presented in parallel.

ND-05.007.0l

Inter-Register Operation

The A-operand is, as for memory reference instructions, taken
from the Register Block A.

The B-operand is taken from the Register Block B.

The BL lines out of registers 16-31 and 48-63 will always
carry the bits from 0-31, while the BM lines out of registers
0~15 and 32~47 will contain either bits 32-63 in the operand
for double register or floating double register operations or
bits 0-31 if none of these operations.

The registers 16—31 and 48—63 are not in use for single
precision floating.

During double register (shift double) or double floating
register instructions 64 bits are selected through the operand
selector in parallel.

ND-05.007.01

1,],I-12~3

CHJANDMEMORYIWERANDSTOEXTERNALARWHMEWC
(B-operand shown)

REGISTER BLOCK B

REGISTER

015

BIT 0-31

Int/Ill!IIIII/I/I/IHIIIHIIIIII/I
BIT 32 63

REGISTER BLOCK 8

LJOUBLE
REGISTE

REGISTER

REGISTE 16-31

BIT 0-31

{\

MBO-3‘I

Y».

,_._._.._‘_~

REGISTER BLOCK 8

REGISTER

3247

BIT 0-31

l/IIIIl/l/I/I/l IIII/ll IIIII/lllllll’y
BI 3263

llllllllllllllllllllllllllll‘ll‘ll“

REGISTER BLOCK B

REGISTER

4863

BIT 0‘31

1’
W/l/I/////I//////I///I// I Ill/Illll/

B|T 0-31
[ll/IlllllllllllllllllIll/11111111

J

MEMORY OPERAND

MED-31

I.

I

W—H
TO CPU ALU 80-31

STRBI
DPERAND LATCH

TRISTATE DRIVER

ARACK (am

CARACK (AU) V

mT: o m

V
PERANDSELECTO§éé;:/

I

STRBZ
OPE RAND LATCH

TRISTATE DRIVER

ARACKIBW

CRACK (AU)

TO”EMERNAL“ARHHMETW

Figure III.IZ.1 ND—05.007.01

FOR:
SINGLE PREC.g

NOT IN USE

FLOATING

32
BITS

CPU (B-RACK) CARD:
1502.1 - 1502.8

_—~..——.—..-——¢u——-—.———.__-
|503.1 - 1503.8

I'II-lZ-li

OPERAND SELECT AND EXTERNAL ARITHMETIC TIMING:

Memory Reference Instructions:

A—Operand

I
STRAI 3‘ fl

Instruction ,..,.. IR Register

A-Operand Latched
Both 32 and 64 bits

Bit 32—63 Iatched

Bit 0~31 Iatcheid

STRA2 I
H

I 250ns

B—Operand
Iint—~— 1 2 us

—-T~‘I

STRBZ II I‘— 0,8 ,us
STRBi '_ 3 l

I . Start Ext.
1 Arith. if 32
fits Operands
I
H“...—

Inter~Register Instructions:

50ns
H

RYX (Ext. Arith. finished)
EWP (Write Dest. reg. in CPU)

text —’+

l

I—> Start Ext.
I Arith. if 64

Bits operandsIl
I textHF—*—
I

|
I

STRAI I
STRA2 I f?

I

STRBI I [W
STRB2 I .

SSOnd
I L..._.____, Start Ext. Arithmetic

I
WP

Text wiII depend on type of instruction.

RYX

ND-05.007 .01

SOns
I‘-—->I

1
l

RDY

P
———————>

A and B operands Iatched
Both 32 and 64 bits

111.13

III‘l3-l

RESULT FROM EXTERNAL ARITHMETIC BACK TO CPU

All results achieved in the external arithmetic are written

back into the Register Block A and B in parallel. The
register number is specified in the destination field in the

instruction.

When the ready signal (RYX) from the external arithmetic

arrives, the result is ready on the data lines and the ready
pulse triggers the register write pulse (WR) in CPU on the
1519 card.

When the external arithmetic returns a double precision, 64

bit word as a result, all the 64 bits are written back

simultaneously. Bits 32—63 via the most significant SUM
bus SM and bits 0—31 via the least significant SUM bus SL.

When executing integer multiply (MPY) or integer divide (DIV)
in external arithemtic, the result on the most significant
SUM bus will be the overflow (more than 32 bits result) for

multiply and remainder for divide.

When the RYX signal arrives, the CPU is pre-determined to

write the most significant SUM bus into the OVERFLOW register
if FMU and into the REMAINDER register if DIV. This is done
in parallel with writing the least significant SUM bus (the
result) into the destination register.

ND~05.007.01

mEQ

‘wmwmxmmfl

:5

Rmm~t8€

qkmb

Nd

“.15u

DQQ

om-2

III—llr-l

AIVIQm

gm

QmZ
v

92

an“

mom“

I.

—-~-—---‘—'—1E
E

f

Nam“

ND-OS.OQ7.01

SECTION IV

EXTERNAL ARITHMETIC C-RACK

ND-05.007.01

IV‘I

DETAILED CONTENTS
+++++++++++++++

Section

IV.l C~RACK GENERAL

IV.2 SHIFT MATRIX

IV.3 SHIFT INSTRUCTIONS

IV.4 BIT INSTRUCTIONS

IV.5 CONVERT TO FLOATING

IV.6 CONVERT TO INTEGER

IV.7 FLOATING ADD/SUB

IV.8 FLOATING REGISTER SKIP INSTRUCTIONS

IV.9 C‘RACK OVERVIEW

ND-OS.OO7.0I

Page

IV~I*I

IV~2‘1

IV—3—1

IV—4-1

IV*5—1

IV-6-1

IV-7-1

IV-8-1

IV-9‘l

IV.

IVrl-l

THE C-RACK

In the C—rack,
the following instructions are executed:

as part of the external arithmetic,

Memory Inter. No.0f
Ref. Register operand

Mnemonic: Instr. Instr. Means: bits:

FAD X Floating Add F+(Ea) 32
FADD X Floating DP Add FD+

(Ea, Ea+l) 64

RAF X Floating Reg. Add 32
RAFD x Floating DP Reg.Add 64

FSB X Floating Subtract
F - Ea 32

FSBD X Floating DP Subtract
FD — (Ea, Ea + I) 64

FIX X Convert floating to
Integer 32732

FIXD X Convert DP floating
to Integer 64/32

FIR X Convert floating to
Rounded Integer 32/32

FIRD X Convert DP floating
to Rounded Integer 64/32

FLO X Convert Integer to
Floating 32/32

FLOD X Convert Integer to
DP Floating 32/64

X Shift a 32 or 64 bit
operand up to 63
places to the right
or left with arith- 32
metic, logical or or
rotational shift 64

BST X Bit set 32

BCL X Bit clear 32

BCM X Bit complement 32

BSZ X Bit skip on zero 32

BSO X Bit skip on one 32

ND—05.007.01

IV-l-Z

As the table indicates, four of the instructions are
memory reference instructions (one operand from memory
and one from a register) and the rest are inter-
register instructions (both operands, if two, are
taken from the register block).

A—operand B-operand

DATA FLOW $

The C~rack consists of OPERAND SELECT
this main card set: 4 x 1513

$2 x1511
SHIFT RIGHT MATRIX

2 x 1512
OPERAND SELECT 4 X 1513 i

FLOATING ARITHMETIC

Four 1513 cards select 4 X 1514
the operand to the inter~
nal bus. 1' 2x 1511
SHIFT RIGHT MATRIX SHIFT LEFT MATRIX

2 x 1512
Two 1511 cards shift the *
operand O, 8, 16, 24, 32, 2 x 1517
40, 48 or 56 places. The LINE DRIVER
shift can be rotational
or arithmetic.

Two 1512 cards shift the éi)
operand O, 1, 2, 3, 4, 5,
6 or 7 places. RESULT TO CPU
Hi

FLOATING ARITHMETIC 4 x 1514

The floating mantissas are added or subtracted on
these cards. (Exponent arithmetic on card 1515.)

Shift operands go directly through. For bit instruc-
tions, the specified bit should now be in bit 0 and
is manipulated and checked on card 1516.

SHIFT LEFT MATRIX

As right shift matrix but shifted left.

LINE DRIVER

Drives result on tri-state lines to CPU.

ND-05.007.01

lV—l—3

TIME USED:

All instructions executed in the C-rack take the same
amount of time. The time from the operands are pre-
sented until the result is on the result bus to the
CPU is approximately 400 us.

The operands passing through the C-rack,arenever latched,
so the time used is given by adding the integrated
circuit delays together.

The OR of all start signals to the C~rack triggers
a one shot on the FLOATING CONTROL 1516 card. This one-
shot is set to approximately 400 ns equal the time the
operands need passing through the logic and the re~
sult is ready on the data lines to CPU.

l
AU63-32

SHIFT (32 BITS,

BIT OPERATIONS

CONVERT TO
FLOATING (FLO)
32 BITS

CONVERT TO
FLOATING (FLOD/
64 BITS
CONVERT TO
INTEGER (FIX)
32 BITS

AU63‘32

FROM B—RACK CPU

AU31‘O
l l

BU63~32
L

IV—1-4

l
BU3

SHIFT DOUBLE (64 BITS)

CONVERT TO INTEGER
DOUBLE (FIXD) 64 BITS

l

OPERANB FROM
MEMORY OR
REG. BbOCK B.

1-0

FLOATING ADD Auié FLOATING ADD BU31-0
FLOATING SUB FLOATING SUB

FLOATING ADD DOUBLE FLOATING ADD DOUBLE
FLOATING SUB DOUBLE FLOATING SUB DOUBLE

C - RACK

U63-32 u3i—o

RESULT 32 BITS

L
RESULT 64 BITS

CONTROL SIGNAL

IV— 1-5

TO THE C—RACK:

In addition to the operand data given in FigureIV.1.1,the
following control signals are decoded in the CPU and
sent to the C—rack.

Gen. on
cards: Means:

SFAD 1508 Start Floating Add

SFSB 1508 Start Floating Subtract operands
‘ latched

SOPR 1508 Start Bit-, Shift— or and ready
Convert instructions in CPU

DPA 1505 Double precision
floating point

The following 1R signals are buffered in the CPU (1505)
and sent to the C—rack.

lRX O - 5
1RX 23 - 30

SIGNALS BACK TO THE CPU

Gen.: Means

SELBIT 1516 Specified bit used by the CPU in
Bit~Skip instructions

FRSBLT 1516 Floating register compare bit used
by CPU to determine SKIP condition

OFZ 1516 Floating or Integer (FIX) Overflow

UFZ 1516 Floating Underflow (Result equals 0)

RYP 1516 Result ready on data lines to CPU.

ND-05.007.0l

IV.

IV-Zrl

SHIFT MATRIX

in the NORD-SO all shift operations are performed on
two cards: 1511 and 1512. The same cards are used
both for right and left shifts.

The 1511 card shifts the operand O, 8, 16, 24, 32,
40, 48 or 56 places, while the 1512 card shifts the
operand O, l, 2, 3, 4, 5, 6 or 7 places.

The output of the 1511 card is connected to the input
lines on the 1512 card. This makes it possible to
shift the operand any combination of shifts from O~63.

For shifting a 64 bit operand, 2 of each of these
cards are needed.

The cards are built up of 8-1 line sectors (74151),
where the 3 select lines, drawn on the top of the IC,
determine which operand bit to be selected to the
output, i.e., the number of places to shift the whole
operand.

In this way, the time involved in shifting is indepen—
dent of the number of shifts. Shifting an operand 1
place takes the same time as shifting an operand 63
places. The time used is equal to the 1C delay.

On the 1511 card, the IR bits 3—5 give the number of
places to shift the operand, while on the 1512 card,
1R bits 0-2 give the number to shift the operand.

On both cards, the output from the selectors can be
disabled (not shown on the drawing), getting only
zero from the shift matrix.

ND—OS.OO7.01

LV-Z—Z

NE

.-

,E

I

o5
1115.8:Ixinasnlinztulqin'ltln‘lxnuIlluslsulqrantultx:gn3:11:11Itllutlniu‘uuesmls:

:m,

_m

..

om

¢

mm

c

we

-.
_m

A.
ow

..
mm

.
mm

‘
hm

?mp¢>;

on

“m

-.

mm

.

mm

;

gm

1.
mm

-,
mm

-.
_m

:
om

:
mq

-

m¢

mv

:

mv

:

mg

..

we

-.
mv

-1
«v

-.
mq

:
NV

:
_q

.Y
ow

$2.24--

$92--

-.

8:2

..

82f

-.

mmmi.

.x
B

«2-

.1892:

mm

«2..

.,
3H

:2.

mmosT

‘

8

mm

.

mm

:

Fm

.

om

.

mm

.-

mm

.

nu

:

mm

;

mm

:

«N

mm

.

vm

:

mm

-1

mm

-

Pm

.-
om

-

my

:
w,

:
NF

..

my

5,

:

mp

:

mr

;

qr

-Im_

:
m,

;
PP

:

or

:
m

:
m

mm:

:

mm:

-

um:

:

mm:

.
m3

-&m3

.mm:

pmm:

4_m3

.

om:

uillilr

w

w

w

h

h

w

w

-

mm.

:1...;

m.

-‘--

mm.

----I
-

ozmzm

ommZm

.............

H11.

Fem

hm—vh

man

-

-u1

mm
11

mm:

1.‘1

mmxl

IL

_m3

FIQExiEgiim

E

:1

-It-

om.|:

om:

VIII.

moZ.mZ

VLOQNCOCDOr.
m
E

N
Z

COVLOQNOOCDN
E

_.N.>H

mpswmp
FNMQ‘LOLDN

n1““7

IV. 3

IV~3-1

SHIFT INSTRUCTIONS

Shift register instruction format in IR register:

31139,??u3§ ZZH%9125,29.23w22 18 17 12 11 6 5

—ll-
00 Rotate Register
01 Rotate Register
10 Arithmetic when right shift
11 Logical shift (zero end input)

0 DR/DFD SRA

R=l Shift right

L=1 Shift left

=0 0 g SC 5 31

=1 0 S SC A 63 Shift double
precision register

D = IR signals sent to C—rack.

During right shift (R=l) the IR bits 5-0 are enabled
to the SHIFT RIGHT MATRIX (1511, 1512) to give the
shift count.

During left shift (L=1) the IR bits 5‘0 are enabled
to the SHIFT LEFT MATRIX to give the shift count.

As indicated on the C-rack data flow, the shift operands
go as the A operand and during 32 bits shift the operand
is presented on the most significant AU lines.

On the SELECTOR cards 1513, the 32 least significant
bits are set to zero. So during any shift 64 bits are
always shifted.

During arithmetic shift (SM=2) right AU 63, the sign
bit is extended during the shifting. (sign extension
SIGNO)

In left shift, zeros are fed into vacated bit positions.

In logical shift, the bits which are shifted out of the
word are lost and zeros are put in the other end.

ND—05.007.01

IV-4—1

[v.4 BIT INSTRUCTIONS

Bit instructions format in IR register:

BIT SET (BST), BIT COMPLEMENT (BCM)

.31,3QH2?.28 B] 26 2g 24 23 22 18 17 12 11 6 5 0

i 0 DR

C = 0 BST
C : 1 BCM

BIT CLEAR (BCL)

BIT SKIP ON ZERO (BSZ), BIT SKIP ON ONE (B80)

0 22

N I] 0 B82
1 B50 IR signal to C-rack

N |

During Bit operations, both the SHIFT RIGHT and the
SHIFT LEFT matrix are enabled.

The IR bit 5-0 is used to shift the specified bit num-
ber to bit position 0 in the shift right matrix (rota—
tional shift).

When the bit is in position 0, the bit is either SET,
COMPLEMENTED or CLEARED. This is done on the 1516 card.
In the shift left matrix, the Whole Opeféfifi“§3?3 TE shifted
back leaving the specified bit in its original-yosition.

BIT SKIP instructions are executed in the same way, but
this time, the specified bit is selected and gated
back to the CPU (1516) where it is checked against the
skip condition (1506). If the SKIP condition is satis—
fied, the CPU skips the next instruction.

ND—05.007.01

IV.

IV-S—l

CONVERTING INTEGER TO FLOATING (FLO)

CONVERTING INTEGER TO DOUBLE PRECISION FLOATING (FLOD)

INSTRUCTIONS

Hardware Execution: On Card:

Select the operand AU63~32 to the internal
bus UB63-32. Set UB3l-0 equal to zero. 1513

Shift UBb3-32, 32 places right.
Sign extension (ARITHMETIC shift) if AU63
was equal to one (negative integer). 1511, 1512

Invert (2's complement) if AU63 was equal
to one, otherwise not. The priority encoder
looks for the most significant one bit. 1514.1,1514.2
This information, equal to the number of
left shifts counted from the most signif-
icant mantissa position (SLZO-S), is fed
to
the 1515 card and subtracted from a
"normalized" exponent. (An exponent bias
4008

and the maximum number of shifts
(55 = 67) added.) The exponent looks. . 8
like this:

100 110 111 1515
k_\/_J

bias 67

The output of this subtraction is a ready
biased exponent (UD54‘62).

The number of left shifts (SLO-S) is fed to
the SHIFT LEFT matrix where the integer is
shifted to be a normalized mantissa. The
exponent part is masked away. 1511, 1512

The mantissa bit 54 is removed. 1512.4

The exponent UD62-54 is fed from the 1515
card, and the shifted mantissa is fed from the
shift left matrix
to
the DATA BUFFER card, driving the result (U)
to the CPU. 1517

The Sign bit U63, equal to AU63, is driven
from the 1516 card to the CPU. 1516

Nd-05.007.01

IV.

IV-6—1

CONVERT FLOATING, DOUBLE PRECISION FLOATING TO
INTEGER (FIX, FIXD)

CONVERT FLOATING, DOUBLE PRECISION FLOATING TO
ROUNDED INTEGER (FIR, FIRD)

Hardware Execution: On cards:

The exponent part of the floating operand
AU62—54 is fed directly to the 1515 card. 1513
The mantissa part is selected to the
internal bus (EU) to the SHIFT RIGHT matrix.

The exponent part is subtracted from a
"normalized" exponent, giving the shift
count to the mantissa to form an integer
(RSHO-Q). The magnitude of the exponent 1515
is checked. Integer overflow (PIOFL) is
generated if exponent > 3210.

Integer overflow (SIOFL) is detected in
case of FIR, FIRD when the result before
rounding is the greatest possible integer
and the rounding adds a one. ' 1516

The mantissa is shifted in the SHIFT
RIGHT matrix according to the value of
the exponent (RSHO-A). 1511,1512

In case of PIOFL, the SHIFT RIGHT matrix
is disabled (NENBL) giving the greatest
possible integer as output. 1512

The integer is inverted (2's complemented)
if AU63 was equal to one. 1514

Direct through the SHIFT LEFT matrix, no
shift. 1511,1512

Integer driven to CPU. 1517

IV.

iV‘I

FLOATING ADD. SUBTRACT

The process of adding/subtracting two normalized floating point
numbers can be devided into four steps:

1. Selecting the greatest exponent as the main or result
exponent.

2. Shifting the mantissa of the operand with the smallest
exponent.

3. Add/subtract the main and the shifted mantissa.

4. Normalize the result mantissa.

The A-operand exponent AU62-55 is subtracted from the B-operand
exponent BU62~55 (Refere to figure IV.7.l).
The carry signal of this subtraction is used to select the greatest
exponent as the result exponent via the UA BUS, and select the
mantissa of the smallest exponent as input to the shift-right
matrix via the UB-BUS.
The output of the exponent-subtrator gives the shift count to
shift the mantissa on the UB-BUS right.

If BU>AU the subtractor output will be negative and the absence
of the carry is then used to invert the output to generate a
positive shift-count.

The three most significant bits in the exponent are compared to
see if one of the exponents is much greater (>>) than the other.
If that is the case, the greatest operand is taken as the answer
and the output of the shift—right matrix is disabled. (Zero is
added to the final result).

ND-05.007.0l

IV-7r'~ 2

AU54.__.M. — ~ ——+—RSHO
BUS!» ____’_ SUB-

: TRACTER
l AU~HU IN" AMOUNT RIGHT TO

EXPONENT: VER— TO SHIFT RIGHT
. TER SHIFT SELEC- SHIFT

60:3: MANTTSSA TOR MATRIX
61_fi.

“D- '_1
AU62 ,r ——H—-RSH5
BU52 —___«. CARRY

_, “j 0
ALU

T
COMPLEMENT IF

SUB NEG.NUMBER OUT
OF SUBTRACTER

“——”* CARRYO_‘ ’

ATA}>SELECTS

A OR B-
FQ CARRY OPERAND TO UA BUS

>ATB AND VISE VERSA

COMPARATORAU60-62
BU60—62 ANY OF

THESE BITS
DIFFERENT?

YES DISABLE SHIFT_RTGHT—MATRTX (NENBL)
THEN Ea) > Eb

or
Ea <<Eb

EXPONENT MAGNITUDE COMPARATION CIRCUITS

(ON 1515 CARD)

Figure IV.7.1

ND—OS .007 .01

IV—7“ 3

AU63-0 DOUBLE BU63-O DOUBLE
r—A—fi f—Aa-fi

AU63 __________ __ ______~_32 W" 0 BUGB ______ __L________3_2 ____ O
W 1* 7‘ 7 “T r‘ -1EXP. g MANTISSA l 1 EXP. I MANTISSA 1

m 5_____24I_ ______I_____I 621-.....1_ ___._L___-_J
SIGN "l —;

A—OPERAND E—OPERAND

7 7 % I V V

62 l 1513 0 ATA Q } 1513 0 ATE
I SELECTOR 1 SELECTOR

l l DISABLED f3
UA62-54 UA (ENBLBM)

$
\RSHO \SHIFT—RIGHT \RSHS

1511’ 1512
MATRIX

DISABLED (NENBL)

AU63
}SIGN BIT

“ ‘ PLUS BU63EXPONENI
MANTIES?4ADD/SUB FAD FLOATING ADD5 FSB FLOATING SUB

4: i
Figure IV.7.Z

The output of the subtracter/inverter gives the number
of shifts the mantissa of the smallest operand must be
shifted to the right (RSHO~RSH5) to make the exponents
equal.

The operand with the highest exponent is selected as
the main exponent via the UA BUS.

ND-OS.OO7.01

IV—7- 4

MANTISSA ADD/SUB

Whether the two mantissas,the main and the shifted
one, are to be subtracted or added depends on
the sign of the two operands and the operation.
(Floating ADD or Floating SUB).

The mantissa add/sub is performed with an ALU
(74181) on the 1514 card.

The shifted mantissa N is added/subtracted to/
from the main mantissa UA according to this table:

SFAD SFSB
AU63 BU63 FLOATING ADD FLOATING SUB

O O PLUS MINUS

O I MINUS PLUS

1 0 MINUS PLUS

1 1 PLUS MINUS

ND—05.007.0l

IV—7- 5

MANTISSA OVERFLOW

Mantissa overflow can occur in the cases involving
a PLUS as given by the previous table. (MINUS re-
sulting in overflow is a special case explained
later). The mantissas of the two operands are added
together. The carries are propagated from the low
order end to the high order end.

After addition:

54 32 31 0
*K1“““““““7"““__“*_”““'fi

1 IO 1 DOUBLE ! MANTISSAL._______ L._n____u____J

The resultant mantissa:>1): the mantissa is not
normalized. l < MANTISSA < % = normalized mantissa.

NB! The most significant bit of the mantissa,
UASA, (the bit is always 1 when normalized),
is only used internally in the floating arith-
metic. In memory or in the register block, bit
54 is the least significant bit in the exponent.
Bit 54, the most significant in the mantissa
is inserted on the 1513.4 card.

The least significant bit in the exponent is
internally called (EUASA).

The most significant bit in the mantissa is
masked away before presenting the result to
CPU by simply disconnecting this bit. (The
output bit 54 of the mantissa shift left matrix
is not connected to the driver circuits).

In the case of mantissa overflow, the mantissa is
shifted one location to the right (63 locations to
the left with rotational shift) and the exponent
is incremented by one, and we are finished.

ND*05.007.01

6IV—7—

H+<DMQD

ND-05;007.01

mama

aa<

mDZaz

mama

m.m.>H

mubwam

73.5?

A

All]!

No:

mm

Non:

aalvu<p

No<p

pmo

OH

1>amm

‘I.

Allll

amp

«map

qm<pm

Hzmzomxm

1I|113.1x.11.llll.x1.!1‘tI.II

al

|I.1z‘alil:.l.!;:llli.1l.I!.I::I.II.11.!11I11\.11.t|1111.I:

mama

mama

1

mac:

mow

H

Iamz

lumqmm

H

WHH

Aemwam

mo<am
av

mmw

[moamm

mmo<am

mo

Hem

Hmma

Hmamm

mmzo

aag

OH

Hameao

HmmMMm

alummmnommanmmma

q.qama

oama

o

MOH<Mmzmo
;

filaeom.i+_

mmmm

wmm<ol

amm<o

[IQ

mama

mama

\LTImmpm

pa<

wmm:

awma\

qama

mpam

“on

\\

ATiI

qm<m

«mo

AHmUHm

qmATll

mzov

1T1!

qmz

mm

ama42

mmp.A11:

‘>amq1T.mmmp

Hmma

mwam<

3mm

OH

Hmamm

x

02m

«mmaaz<z
_

o¢a

o:.AIt:

Al.

on:

Alli

oz

\|\

«mmHHZ¢Z

IV~7‘ 7

NORMALIZATION

If the most significant bit in the mantissa (BIT 54)
is not a 1 after the subtraction (and there is no
overflow), we must normalize the mantissa, that is
get a l in the most significant bit of the mantissa.

We now shift the mantissa to the left until we get
a 1 bit in this location.

For each left shift required the exponent is re-
duced by 1.

We are now finished and can present the result
to the CPU.

54

O O O O l MANTISSA

+—————— shift left

number of
shifts

NB! Normalization may only be necessary in the
MINUS cases from previous table.

ND-05.007.01

8IV~7‘

Nob

Emu

OH«m3

mama

AIII.NoDD

HZDOZ<

Emma

mmD

ATIIoar-All.“

Da¢mamaQ:Momma[<3

Hmammuomma

mama
Mm>ama

mOH|UMAMmEmmaHmamm

llllmDZaE
N©¢D

mHmHSmEmma

mamaaama
NHMH<SEmma

l

Hmamm

mH<aIDoa<o

HHMIaMmmmoHmmmwam

mmH

MomOZHMOOAMMOBHMZWHHMOHMm

qmpmoDm

q.N.>H

upswamHzmzomxm

Da¢qama

l?ll.mDZaE
qm<b

llll

qmz

ATII.

O<D¢mmHHZ<E

ND-05.007.01

IV-7‘ 9

SPECIAL CASE

The exponents are equal. We are doing a MINUS ope—
ration in the mantissa ALU. The mantissa ALU does
not generate a carry (054).

This means that the result is negative): we have
subtracted the greater mantissa from the smaller
mantissa. Meaning that we have choosen the wrong
mantissa to the A— and B—bus.

The mantissa ALU output is then inverted (Z'com-
plemented) (INV G 1516) in the second ALU on the
1514 card before it enters the shift matrix, and
the Output buffer.

ROUNDING (IN THE FLOATING ARITHMETIC UNIT)

If we are going to round a number, let us say the
ith bit, then we examine the bit directly to
the right,uthe (1-1)th blt.

The rules for performing this rounding are that
if the (i—l) bit is O, we leave the ith position
unchanged, and we drop the other bits. If it is l,
we add 1 to the ith position and drop the other
right—hand bits

The question about rounding arises when shifting
the mantissa to the right, to equalize the expo-
nents.

Two of the shifted out~bits are taken care of
(ENl, EN2) (—1, -2).

One is enough for the addition and convert instruc-
tion, and two are sufficient for subtraction.

1f the mantissa is already normalized after addi-
tion, the ENl bit is added to the mantissa (1514.1).

If mantissa overflow occurs, the mantissa is shifted
one location to the right.

ND-OS.OO7.01

IV-7- 10

Before the shifting, the least significant mantissa
bit (the One to be shifted Out) is incremented by
one (ADDOO G 1516) giving a rounded answer if the
least significant mantissa bit was equal 1.

In single precision (32 bits) operation, the l~bit
(ADD 32, G 1516) is added to bit 32 Out of the
mantissa adder.

For those with a bright mind more about rounding
can be found in the NORD~50 REFERENCE MANUAL.

ND-05.007.01

IV—7-1l

FLOATING - POINT ADDITION AND SUBTRACTION

Given 2 floating-point numbers:

E
A _ a

| 3 m N % Placed in CPU reg-block A

N 13 CT‘ 0 N
F1B Z Placed in CPU reg-block B

or in memory.

We wilaW calculate the sum (difference)

S = A i B

COMPARE EazEb Ea << Eb

Ea > Eb a < Eb

Shift Mb Shift Ma
Ea-Eb places Eb~Ea places

to right to right

7

Ea-wbEs Ebr—bEs

Ms=MaiMb

YES Overflow for N0
M5 ?

1. Shift Ms right
one place
(Set most Sign
bit = 1) 2. Es:l .~*Es

l. Shift Ms left
one place

2. Es+l ~H>Es

YES Is Ms normalized ?
(Most sign bit=l)

TI‘TNITCUE‘T“

lV.

lV—S—l

FLOATING REGISTER SKIP INSTRUCTIONS

ASGF(D): Add floating registers and skip if result
>_ 0K

ASLD(D): Add floating registers and skip if result
4 0*

ASEF(D): Add floating registers and skip if result
= O

ASUD(D): Add floating registers and skip if result
95 O

SGF(D): Subtract floating registers and skip if
result 2 0X

SLF(D): Subtract floating registers and skip if
result 4 0*

SEF(D): Subtract floating registers and skip if
result = O

SUF(D): Subtract floating registers and skip if
result # O

(D): double precision floating register

The instructions are executed as ordinary floating
add/subtract instructions with the result written back
to the CPU register block.

When executing the instructions marked w the SIGN BIT
(C 63) is selected and gated back to the CPU via the
FRSBIT line.

When executing the other instructions floating zero
(FZERO) is selected and gated back to CPU via the
FRSBIT line.

The FRSBIT signal is tested against the IR function
code bits in the CPU (1506), whether the SKIP con-
dition is fulfilled or not.

c - RACK OVERVIEW/2V 99:

FROM CPU AUG—63 8U 0-53
AU5l5-62

BUSS—62 ‘

7575 (C 79/ ATB.’r 4x753 SEL CT
MAN; _ C2, 3'C4“

UA 0-53 [us 0-63
RSH 3—5 _

ROT 2x 1517 (C5-C6) SHIFT ~93
SIGNO RIGHT

(mo-53
RSHO-Z
pm _ SHIFT

SIG/w
29:157.? {C7 C8}

RIGHT NX1

I
UA 0-54 ”0‘5‘

1PLUS FLOATM;,R L—a ..OUNO
29);:574

(C9 C12)
wmnc

~55 £1155 8M55 5‘” BITSEI ,SELEXP W546? Awe—"E3
1

5“ 7'54 ”it .1855?
LSH3-5 1 SUMO

Ror—u 2x7511 (013-014) S’LE‘IF'T’ NXB

c54—cs2 ~ W 0 '53

75 LSHO-Z
m m _g_ _ SMFT
§§

HOT 2XT572 {C75 C16}
L€FT

NX1

J
-

C63 UDSA-SI U00 51‘

1576‘ 1, m(020) DEN-5L2x1577/c17-c182 %FER
l

410—52 (RESULT)
“7:0 in m C

9:3 3
E 5“ é“ TO CPU.3 a :12 ‘* gt
#3 S E ND-~05.007.o1b aE

m... I an:- “Minna.

SECTION V

EXTERNAL ARITHMETIC A-RACK

ND~05.007.01

Section

DETAILED CONTENTS
+++++++++++++++

A-RACK GENERAL

INTEGER MULTIPLY

INTEGER DIVIDE

FLOATING MULTIPLY/DIVIDE

MUL-DIV TIMING

A-RACK OVERVIEW

ND-05.007.01

V. 1 THE A'RACK

In the A-rack, the following instructions are executed:

MPY Integer Multiply 32 bit operands
DIV Integer Divide 32 bit operands
FMU Floating Multiply single precision 32 bit operands
FDV Floating Divide single precision 32 bit operands

FMUD Floating Multiply double precision 64 bit operands
FDVD Floating Divide double precision 64 bit operands

Theinstructions may either be memory reference instructions
(one operand from memory and one from the register) or
inter-register instructions (both operands from the regiw
ster block).

The operands presented on the data lines from the CPU
are latched in the A-rack before the arithmetic milling
is started with repeated additions for mulitply and re-
peated subtractions for divide.

One card (out of 24) takes care of the floating expo-

nent add/subtract while the mantissa is "milled” in the

same unit as for integer.

An 8-1 line selector - the OUTPUT SELECTOR - selects
the final result of the operation as input to a tri-
state driver driving the result back to the CPU.

The result is selected through the SUM-selector and
written back in the destination register via the SUM~bus.

Control Signals to the A—Ragg

In addition to operand data given in figure V.l.l
the following controlsignalsaredecoded in the CPU out of
the function code bits in the IR-register and sent to
the A-rack:

Gen.
on card: Means:

SMPY 1508 Start Integer Multiply Operands latched
SDIV 1508 Start Integer Divide in CPU and ex—
SFMU 1508 Start Floating Multiply term.arithm.
SFDIV 1508 Start Floating Divide milling can
DPM 1505 Double precision start

floating point

ND*05-007-01

§isesl§l§§9§_te-CPU
Gen.: Means:

RYM 1526 Data Ready. Final result on tri-state
lines to CPU

OFl 1526 Integer multiply overflow. Integer
and floating divide by zero.

UFl 1526 Floating underflow.

Iiee_2§s§=
The table below indicates the time used by the A-rack
to execute the instructions (text). The time is from
the different START pulses to the RYM pulse.

Instruction: text in PS:
FMU 2.5
FMUD 6.2 MEMORY REFERENCE

FDV 2.5 OR

FDVD 6.2 INTER-REGISTER

MPY *
4,0 INSTRUCTIONS

DIV 1.0-4.0

*Time used is data dependent.

In the following a brief description of binary multiply,
divide and floating point multiply/divide will be given
with some information on how this is implemented in
NORD-SO.

ND—05.007.0l

A — RACK (MUL - DIV UNIT) DATA FLOW.V—L~3

FROM B-RACK CPU
2 x

i, i , l
AP63—32 AP3I"O

BPfiB-32
BP31"O

OPERAND FROM
MEMORY OR REG.
BLOCK B

MPY 32 BITS MPY

I INTEGER I

DIV 32 BITS DIV

r

rrrrr FMU 32 BITS FMU 32 BITS
g T I

FDV 32 BITS FDV 32 BITS

LOATING ¢ 4

FMUD 64 BITS FMUD 64 BITS

FDVD 64 BITS FDVD 64 BITS

L. I J: I i

A * RACK

MUL—DIV UNIT

a

RESULT

P63’32 P3I—O

MPY overflow MPY result

INTEGER & I
DIV remainder DIV result

r J,
FMU 32 BITS

FDV 32 BITS

, 4, ‘
LOATING

FMUD 64 BITS

FDVD 64 BITS

.2..- n 1 1 TxTh_($RT9\flC7PIII\1

INTEGER MULTIPLY

In any number system multiplication consists of
adding a number to itself as many times as speci-
fied by the multiplier. In actual practice bin—
ary multiplication reduces to copying the multi-
plicand whenever the multiplier digit is l, and
not copying it (or writing zeroes) whenever the
multiplier digit is 0. As in decimal multipli-
cation you must, of course, also shift one place
to the left after obtaining each partial product
and in the end add up all the partial products
to obtain the answer.

The following example illustrates the simple pro—
cedure:

multiplicand (l3) multiplier (5)

l l O 1 x l O l

l l O 1 first partial product

0 O 0 0 second partial product

1 l 1 third partial product

product = l 0 0 O 0 O l (65)
_______-_._——————-__________———————-

We could, of course, have omitted the second
partial product of zeroes by simply shifting
over to the left one additional place. Thus,
binary multiplication can be reduced to the pro—
cess of copying the multiplicand whenever the
multiplier digit is 1, then shifting over one
place to the left (multiply with 2) if the next
multiplier digit is a l, or shifting over one
additiOnal place for each 0 in the multiplier.

The partial productsare then added to obtain
the answer.

The method used in most computers is to add the
partial products together as soon as they appear.

ND-05.007.0l

An example using this method follows:

multiplicand (15) multiplier (13)

1 l 1 l X 1 1

1 l

l 1 1 l

1 0 O 1 O

1 1 1 1

1 l 0 0 0 O

O 1

1 1 product 1

product 2

sum

product 3

final sum

Note that the answer has twice as many hits
as either number. If both numbers have the same
number of bits , the product will always have
twice as many digits, or be of double length.

INTEGER MULTIPLICATIDN

MULTIPLICAND MULTIPLIER

MULTIPLIER—REG.
SHIFTED ONE
LOCATION DOWN/
MULTIPLIER BIT

B-REG.

IF BIT 0: 0 1
A PARTIAL PRODUCT (QC)

DIRECT THROUGH
A

ADD AC-REG.TO MULTIPLICAND

OUTPUT OF ALU SHIFTED
ONE LOCATION TO RIGHT

Ac—REGISTERC
PARTIAL
PRODUCT
REGISTER

RESULT %

Figure V.2.1

ND—OS.OO7.01

Improvements in the Shifting Multiplier

In order to reduce the speed in the multiplication
process a method of inspecting the multiplier bits
in pairs 18 used in the NORD-SO.

An example:

multiplicand multiplier

l X 11 10 01 00Lwlnwlk#~w4I ' 00 The multiplier is
I shifted 2 locations
I to the left.
I NO ADDITION
|

l

I

|

I

|
' 01 Shifted 2 locations' MULTIPLICAND ADDED
: TO THE PARTIAL PRODUCT

10 Shifted 2 locations
TWICE THE MULTIPLICAND
ADDED TO THE PARTIAL
PRODUCT

I
I

I

I

I

l

|
I

I

I

I

I

l

: (Twice the multiplicand
, is the multiplicand
. shifted once to the left
|

I

ll Shifted 2 locations
THREE TIMES THE MULTI-
PLICAND ADDED TO THE
PARTIAL PRODUCT

sum : ll 10 Ol 00

If the MULTIPLIER is latched in the B-register
and PARTIAL PRODUCT“REGISTER is called AC, we
getthese four combinations of the two least sign-
ificant bits in the MULTIPLIER (PISO) register.

MULTIPLIER
BIT 1, 0

O O : l/4(AC)~+~AC Z AC shifted 2 locations
to the right
NO ADD

0 1 : 1/4[(Ac)+(Bfl —+—Ac

1 0 : 1/4[(AC)+2(BH ~+~Ac

1 1 : 1/4[(AC)+3(B)]—+—AC

3(B): Three times the multiplicand is the output
of an adder with one time the multiplicand as one
input, and as the other input, twice the multipli-
cand (the multiplicand shifted once to the left).

ND-05.007.01

V~2-6

N-SO INTEGER MULTIPLY

(FROM MEMORY (FROM CPU~REG.MULTIPLICAND MULTIPLIEROR REG.BLOCK BLOCK A)
B)

BKL

MULTIPLIER
REG.SHIFTED
TWO BITS AT
A TIME

526l PISOQZ

SELECT
INP

SELECTOR 1521 ED3

THE 2 LEAST SIGN.BITS (BITS NOT
ADDED ANY MORE) ARE SHIFTED INTO
THE SIPO REGISTER 2 BIT AT A TIME

SHIFTED 2 LOCATION
TO RIGHT

1521 L
PARTIAL
PRODUCT

es \VREG- 32
RWERFLOW /

1522

31 0

RESULT E
1522 9

* IF ALL THESE BITS
ARE EQUAL, THERE
IS NO OVERFLOW

TO CPU

Figure V.2.2

ND~05.007.01

NORD—SO INTEGER MULTIPLY
(32 bits x 32 bits = 64 bits)

Cycle:

C0

C1

C2

B-operand (Multiplicand) BP—>F—>M~>IB—>SB
(Via 1523, 1511, 1512, 1523) without change
clocked into the RB—register.

IBO->SBZ3(1523.1)—>RB23(1521.7)

1B31~>SB54(1523.4)-[:RB54(1521.7)RB55(1521.7) Sign.extension.

A-operand(Multip1ier) AP31-2 clocked into
the PISO-register on 1521.
APO,1 direct to 1526 for generating control
signals ED2,3 for first operation in next
cycle C1.

O—>AC by clocking YO.

Loop, 32 clock pulses (16 iterations, each
handling 2 bits).
The A-operand is shifted out of the SIPO
(PISOQZ) two bits at a time and choose
RB*O, RB*1, RB%2 or RB*3 (ED2,3) to be added
to the AC—register. The output of the Y-
adder is shifted 2 bits to the right and
clocked into the AC-register.

The 2 least significant bits of the Y-adder
Y0, Y1 (1521.1) are latched on the 1526 card
(AMNl, AMNZ) and shifted into the SIPO regi'
ster (1522.1), two hits at a time (Q1).
The SIPO is an extension to the AC-register.

Correction:

If A—operand negative (A31=1):

Then the R'B was added one time too much,
and to get the Sign correct, we must subtract
the R'B.

1/4(AC~1'RB)—>AC ED2=ED3=O
z YADR=SUB

ND-05.007.01

02
cont. If A-operand positive:

1/4 AC—>AC

NB! Only Y‘adder in use.

C3 Present result on P-lines to CPU.

1522.8 OVERFLOW 1522.5 1522.4 RESULT 1522.1

AC52-AC21 ACZO-ACO, AMNl, AMNZ, IQO, QO-Q7

P63r32 P31—O

i To CPU i

MPY OVERFLOW:

Multiplying 2 integer 32 bits come up with a double
precision number, 64 bits.

An overflow condition exists unless all the 32 most

significant bits are equal, and equal to the most signi—
ficant product bit.

The ACSZ—Zl bits are checked for all ones or all

zeroes on the OUTPUT SELECTOR cards 1522.5-1522.8.
If AC20 and AC52—21 are not equal an overflow signal

(OFL) G 1524 is sent to CPU.

In Test System:

Overflow—register is shown as LEAST-RESULT:

10/5/77/PK/eml
Nn-05.007.01

BINARY DIVISION, INTEGER

Division in any system is the inverse of multiplication.

It is the process of determining how many times one number (the

divisor) can be subtracted from another number (the dividend),

while still leaving a positive remainder.

The number of times this can be done is the result, or the

quotient.

For example, dividing binary 110111 (55) by 101 (5), Answer

1011 (ll) remainder O.

DIVIDEND DIVISOR QUOTIENT

llOlll : lOl = 1011

24.9.1.
ll

0
ill

29.}.
101

4.0.;
O REMAINDER.

In binary division we are either able to subtract the divisor

(in which case the quotient digit is l), or we are not able to

subtract the divisor (giving a quotient digit of O).

A way of implementing this in hardware would be to latch the

divisor in a register (B) and the dividend in another register,

the accumulator or the AC—register. Refer to figure V.3,1

After latching the divisor and the dividend, we now subtract

the B—register from the AC-register.

If the subtraction is succesful (B>AC), that is it leaves a

positive remainder, a carry is generated by the subtractor.

The carry is fed to a quotient—generator, generating a 1 bit

that is fed to a serial in—parallell out register (SIPO), the

quotient-register.

The carry signal also selects the input to the AC—register:

If the dividend is greater than the divisor, the AC—B value is

fed into the AC~register shifted one location to the left.

ND~05.007.01

If, however, the larger number (B) is subtracted from the

smaller (AC), no carry is generated (the divisor is too large).

A zero is generated in the quotient—generator and fed into the

SIPO shifted one location to the left. The AC—register is fed back
to itself by the carry, and shifted to the left in preparation
for another trial.

At the end the AC—register holds the remainder and the result
(the quotient) is in the SIPO—register.

l
mvmoa

BREG

AC

SUB “*4” WADDER

\\\~————b-CARRY
AC—B AC

ouonENT
SELECTOR GENERATOR

SHIFTED
1 LOCATION LEFT ______

ouonENTREQ
ACREG. mPo

DHHDENDREG. <e—~——SHWTEDLEFT

l

REMAINDER RESULT(OUOTWENT)

F i gure V . 3 . 1 Division Hardware

ND—05.007.01

DIVISION IN NORD—SO.

INITIALIZING THE DIVISION.

THE DIVISOR:

To reduce the complexity of determing what multiple of the

divisor can be subtracted from the dividend, the divisor is

aligned to a normalized—position.

The most significant ”1" bit in the B-operand (the divisor)

is shifted left to the most significant B—register position

(RB54).

In hardware this is done by using a priority encoder to look

for the most significant "1" bit.

The required shiftnlength for the divisor is found by sub—

tracting the output of the priority encoder "1" bit position

from the most significant bit~position. The shift—length

(SH4—O) is latched for later use.

The divisor is shifted left in the shift—left matrix cards

lSll and l512, and clocked into the divisor~register (RB).

The B—register is stable during the rest of the operation.

Before the subtractions take place, both operands are made

positive. The B—operand (the divisor) is inverted by the 1523

card (if it is negative). This takes place before the shifting.

THE DIVIDEND:

We have to shift the dividend one place right if the divisor

was shifted an odd number of places left, because as we shall

see later we are handling the bits in pairs. In hardware we do

this by selecting the An + 1 bit as input to the dividend

register (AC).

The dividend is inverted if it is negative. This is done in

the X—adder by subtracting the A—operand (dividend) from the

initial zero content of the AC~register.

If it is positive the dividend is added to the zero content of

the AC—register (directly through the adder). The output of the

X—adder is shifted 2 places left and clocked into the AC—

register.

V~3-4

DIVISOR FROM MEMORY OR REGISTER BLOCK 8

F

1523 1525

I
LATCH SHIFT

LENGTH 1525

Floating Mantissa from
Memory or Register Block 8

Floating Select

I I
BP31 BPO

/ /
X

fi/I/Ac25
/6I I/

@— lNVERTBIF NEGATIVE ——>
/M 15f MMWWW/W/

I I
F31 F0 PRIORITY

ENCODER

SHIFT LEFT MATRIX
K

w—swz-z
1511

M31 MO

SHIFT LEFT MATRIX Qfl sm—o
/1512

/
/ 1 BP53 BP23 BP22 BPO

l I |
I I 7 I I l

1831 I I lBO I I I
// / 1/ my I l I

/ t I I l l
I I

fl— _____

SELECTOR 1523
2 I!z/ I/// ml Bl

I I

Wa

é/%/ZW‘l I
Hoperand to Arithmetic (1521)

F i gm: 8 V « 3 - 2 Divisor (B-Operand) and Remainder Data Flow

N 13—05 .007 .01

r ‘1
l l

DIVISOR R‘EG. RE I FLOATING I
I l

r 32 B REG. ,.94 R
23

{22—————O

W Integer .M

W Floatlng Double I 3

‘M Floating Single

/////////
.3

BKL

Remalnder Data Flow
at the end of operation

DIVlDEND FROM CPU

$ t i
$A30 é A0 Lo

‘

l.
"""""""

é l
1521 8H0

nt—~——————--
selector (BSEL)

$

AC=O
‘

M PLUS A)0
1521

XADDER w~—— Mmus B)+(iA)H A< o
ALU

X54 X21

A056 AC23
«HACKL

AC REGISTER

__._._J

13‘ i gure V . 3 . 3 A—Operand (Dividend) Initial Data Flow

NUMBER OF SUBTRACTIONS

The number of subtractions depends on the number of shifts of
the divisor. The bits are handled in pairs, and the number of
subtractions required for a division with two 32 bit operands
is:

16 — (position of the most sign "1" bit) /2

or

16 — (SH4-O) /2

This means that dividing goes faster with a large divisor
than with a small one.

VVVVV~

If the divisor is a small number, 1 for example then the maximum
time is required to do the division. In this case, the ”1" bit
has to be shifted 3l places left to the most significant bit position
This is the equivalent of doing a division using pencil and paper:

When dividing by l, the quotient will be equal to the divident
and there will be no remainder,

when dividing by a large number, the quotient will be small
and generally will leave a remainder.

As we have mentioned before, there must be an even number of

bit—positions between the decimal—points of the divisor and
the dividend.

ND~05.007.01

DIVISION LOOP

When doing decimal division with pencil and paper, we first
make an estimate or an intelligent guess at what multiple of
the divisor can be subtracted from the dividend still leaving
a positive remainder.

If our quess turns out to be wrong, we reduce the multiple
by one and try again. The final multiple, with a value from

O~9, will then give us the quotient.

The NORDeSO MUL/DIV unit carries out division in the manner
described above. Refer to figure

To increase the speed of this operation, bits are examined
in pairs. This means that the dividend can be subtracted
either 3, 2, l or 0 times from the divisor.

If the subtraction is successful, the quotient will be either

3, 2, l or 0.

If the subtraction is not successful, we reduce the multiple
of the divisor by one, and reduce the estimated quotient by

one.

We estimate the quotient by looking at the 2 most significant

B—register bits (B54, B53) and the 3 most significant AC—register

bits AC 56—54.

The estimated quotient bits ED2 and ED3 (G 1526) are used to

select various multiples ofthe divisor register as input to
the Y~adder and the X—adder. The X—adder input is always one
multiple less than the Y—adder input.

In the X and Y~adder these inputs are subtracted from the

AC-register (thepartialremainder—register).

If the subtraction in the Ynadder is successful (YC 57 = l,)

the output of the Y—adder is selected as input to the AC—register

shifted 2 places left.

If the subtraction is not a success, (YC 57 = O) the estimate

was wrong and the X—adder output is selected to the AC—register.

The quotient is generated on the 1526 card and if the estimate

is ok, we use the estimate bits ED 2 and ED 3 as the quotient.

If the subtraction in the Y—adder is not successful, we reduce the

estimated quotient by one.

The quotient bits are fed into the SIPO—register 2 bits at a time.

ND-05.007.0l

854 853 AC56,55,54

NOR ALEED
ROPERAND

OUOflENT
ESTIMATE

B 1521 1526
BKL a

DHHSORREG. 502 §

___E03 AOPERAND
DRHOEND-2Ac

8x3 8x2 8x1 BXO 8x2 8x1 8x0

E02
1521 E03 1521

SELECTOR SELECTOR

hi
AC

1521 1521

E03 ‘___.. SUB -——-——-’

VADDER MADDER
EDZ

Yc57

CARRY‘WADDER
QUONENT V

GENERATOR 1521
1526 SELECTOR

m SHIFT 2 PCS LEFT

SIPO REG. 1522 1521
AC REG.

é
DHHDENDNATHALREMAWDERREGSTER

QUOUENT

TOCPU REMAINDER

Figure V.3.4 TOCPU

Quotient and Remainder Generation

NDT05.OO7.01

V—3~9

.HHmH

mmumHm
m

mmHHHHm
um

.HHmH

mmomHm
m

wwHHHgm
04

A:
H

smgp

AcoHHQMHH

Ax
x

nw

AGOHHOMHNQDm

HHDmmmmoosmcdxmN

mamswm

95m

HsmmmUosmms

mamswm

muwvAnmuwv

HHHmu

Hmmmm-w
HH

mundo

Hmwwmlw
MH

.wm.

H

H

H

o

H

H

o

H
n

nmuw
HH

mHQmHHoso

W

o

H

H

o

o

o

o
n

bmow
HH

mpgmHHosa

W

mm
.
m

u
UH

mm
:

um

um

HHAHHmwww:x

usage

.«

mm
.
m

I
ma

mm
.
N

:
um

mm
:

um

Hmwmmiw

usage

H
u

mom
Ho

u

Nam

o
n

mam
.H

u

mom

0
n

mam
.o

n

mom

"mamagumm

W

H

H

m

H

H

o

H

H

o

H
u

nmUH
HH

mucmHHogo

o

H

H

o

o

o

o
u

”may
HH

mucmHHoso

omHm

op

omHm

0p

CH

Ugoomm

ca

pmHHm

HcmHHoso

qHHoso

mm
.
m

I

ma

mm
I

04

Um

Aflumwwmtx

usguso

*

mm

m
I

u<

mm.m
1

um

mm
1

u<

HmMIH

usmuso

H
u

mam
~o

u

mom

onmom

~Humom

o
n

mam
\o

u

mom

"mHmEHHmm

o

H

H
H
H

o
H
H

H
o
H

o
o
H

H
H
o

o
H
o

H
o
o

o
o
o

Hm.mmxom.

Hmkmmkom

HmNmmxom

Hm~mm~mm

Hm‘mmkmm

Hm.mm~mm

mmmkom

Hmkmm.om

mmmm

Hmmm

Am
F
H
m

u<
n2

0
H
m

.H
w
0
2

MV

m
D
3
H
H
z

o,<
E
m
m
O
2
H
<
2
m
m
H
<
H
k
m
<
m

sm
4
m
<
H
k
Z
w
H
H
o
D
@

H.&©HwH\‘/Hm

\m
m
Q
2
H
<
z
m
m
4
<
H
H
m
<
a

”mQDHHZ@<Z

momH>HQ
ND~OS.OO7.0l

V—3-10

SHIFTING THE REMAINDER BACK

Because the divisor is shifted left at the start of the
operation, the remainder on completion of the operation will
be placed too far to the left in the AC—register.

The remainder must now be shifted to the right the number of

places the divisor was shifted to the left.

Since there is no right shift register in the MUL/DIV unit

we must shift the remainder left. Refer to figureV.3.2
to see how this is done.

The remainder in the AC~register is reversed and placed in

the shift—left register and shifted. It is taken out and

reversed again and placed in the output selector for presen—

tation to the CPU.

ND—05.007.01

V—3-11

SIGNS

In integer divison we operate with positive operands and we

have to remember the sign, and correct the sign at the end

of the operation.

If dividend and divisor (A and B operand) have different signs,

we have to invert the quotient.

In hardware this is done as follows:

01

I
I

ll
-——I> 02

swo2156
I

1&2

I
REG. 031

EXCLuaveon I
I

am ,
¢ I

—>‘QNEG INV
I }

A31 _.
LATCF I

| 00 ran ———4> QA-+c ———> ———a> P0

1 I I
BKL l

|

“‘“4’RNEG OUOTENT I
I l mocpu

I
|
I

I u —>
031 u

““‘*’ 0A C _——F '—~4> P31
‘AL

Figure V.3.5

If the A—operand (the dividend) was negative, then the remainder

(that is in fact what is left of the dividend) should also be

negative.

The IB—signals from the shift—register are inverted on the out—

put selector cards 1522.

ND-05.007.0l

V—3-12

DIVIDE INTEGER NORD—SO

C0

C1

C2

B—operand (the divisor) BP is, if negative, inverted
on the B-input 1523 card -F-+ M normalizing shift
(shifting the most significant "1" bit left into the
most significant position in the B~register RB 54).
The shiftlength (SH4—O) is saved so that the remainder
can be shifted back in C3. After shifting a-SB, and

clocked into the B—register (1521).

A~operand (the dividend) AP, is shifted one place if
SHO = 1 (odd number of shifts for the divisor) in the
dividend selector (1521).

If the A—operand is negative it is inverted in the
X—adder 1521 and clocked into the AC—register as Xv4.

NB! AC is now < 4‘B—register.

Loop; the number of times the loop is performed is
determined by the shift—length for the divisor (B—operand)
in CO.
For each loop two alternative multiples of RB (divisor)
are subtracted in the X and Y—adder. (The alternative in
the X-adder is one multiple less then the Y—adder.

If Y is positive Y x 4 —> AC,

otherwise X x 4 —> AC.

Two bits of the quotient are entered into the SIPO—register

The Remainder in AC is shifted back into its correct
position (shiftlength = SH4—0) AC-+ F-+ M shifted-—> 1B,

and inverted (1522) if AP<O.

The Quotient in the SIPO—register l522 is inverted if
AP" BP<O.

Present result a-C ~»P -CPU

In the TEST~SYSTEM, the remainder register is shown in

LEAST RESULT.

ND-05.007.0l

A/S NORSK DATA—ELEKTRONEKK

v.4 FLOATING POINT MULTIPLY/DIVIDE

When multiplying two normalized floating numbers

(Ma- ZEa and Mb vZEb)

we multiply the mantissas and add the exponents

P=MaoMbv2Ea+Eb

when dividing two normalized floating numbers we divide

the mantissas and subtracts the exponents.

Q = Ma/Mb . 2Ea"Eb

We notice that the exponents are added/subtracted and

that they need not to be aligned as in floating addition.

As the simplified block diagramfigure V.4.l and V.4.2 indicates,

the floating mul/div operations can be divided into two

parts. One part for adding/subtracting the exponents

and one for multiplying/dividing the mantissas.

ND-05.007.0l

Emu

THADwmm

A||

H.q.>

mgswwm<m-mH

\
m

mm

l|

%F<.e
H

-Bz

r

|

I<ZA|

mm

|

wqqz

FIN}

Hum

mmHez¢r

.

@mHmmv

4

W

.

a
#

mmHHz<z

mm;

M

H
w

.zmez

m

:

B3||E
-

-mH

M

pH
n

<mmHez<sH

:mo

-Hz

u<

fipzqohgfi7o

HmoW4

20mm

u<z

-

flm%}i}}mww-

mmz<mwmo

m

um».
R

“m4H-mx@

N

m

w

mxm

QQ<

<m

m

M

mNH

a

:mH

-q<zmoz

mUHw
,

M

IHZWA|

m<

|

W

|

I

_

<2

.

.

ag<

Ia

m

mxm

}

mxm

“T

.

20mm

s.

mo
m>Hmagoxm

xqmmfim

53m

mmESmEm

5E5?

wzC<cfi

ND-05.007 .01.

.3@\Mm.mm.q.m~

cmme

a¢mmMmozmmwos

omHm

.

¢m

mam\smmm_

‘mHiwz

o

1;

Ell
mm

A:

wmmH2mH

maH>H

m

.9020

¢mmHaz<

x

K

m

Hmwmm

oz

“2*o

zw:

”mmw

amaze

V

HmHmm

«M

‘

.NH
u

4mmH9242‘

3mg

um

o

Pz<oqHm

Hmoz

oz

A

3

-Hz

mmw

oz

romm

~

.

.

%

EST

whammy”

all!

I”;

+

mmz<mmmo

v

fiea+mxa

mam

mx

mxm

W

m

m

MNH

<m

o

-g¢zmoz

.

a[Hz

ATI1.m¢

a:

11

-¢2

m

mammxm

nTlxllillt

m

I411

x

ll

m

zwmw

%

om

mo

m>Hmmgoxm

z<mm<wm

xugom

mmflnms

mmH>Hm

oH<04L

ND~05.007 .01

A/S NORSK DATA—ELEKTRONIKK

EXPONENT ARITHMETIC

The exponent treatment for multiply and divide is
taken care of on the Exponent Arithmetic card 1524.
See block diagram figure v.4.3

Both operands are entered intoan operand register by
the BKL-signal. The exponents are examined tosee if
they are zero. If all bits are zero, it is a zero
number.

If either of the exponents is zero in floating multi-~
ply, the result will be zero. Zero is selected as result
on the output selector 1522 (SO=0, Sl=l, 82=l via
CZRO 1524)

If the B-operand is zero in floating divide, this means
division by zero,and an overflow signal is sent to the
CPU.

Bit 62, the most significant bit of the exponent, the
bias or offset bit is inverted to take away the bias
and get a standard number.

Bit 63, the sign bits are exclusive-ored to get the
sign of the floating point reSult.

In the Exponent Add/subtract ALU the exponentsaxfi added
if floating multiply and subtracted if divide.

ND‘05.007.00l

A/S NORSK DATA-ELEKTRONIKK

MULTIPLICATION

A normalized mantissa is betWeen 1/2 and l and therefore
always contains a l in the most significant mantissa bit.

If the result of the mantissa multiplication gives a
number between 1/4 and 1/2, leaving a 0 in the most signi“
ficant mantissa bit (ACSB = O), the mantissa have to be
shifted to the left one location (multiply by 2) and the
exponent reduced by one.

In hardware a CORR signal is generated selecting an
exponent reduced by one to the output selector to CPU.

DIVISION

If the result of the mantissa division gives a qoutient
between 1/2 and 2 (Q53 = O), the mantissa has to be
shifted one place down (to the right) and 1 added to the
exponent. In hardware the CORR signal selects an exponent
incremented by one to the output selector to CPU.

ND—05.007.01

OPERANDS FRO

L
Via 1523 1521

M CPU

Operand from
a

Operand from
CPU~reg. block CPU—reg. block A

363 AP63 B or memory.

BKL———®SIGN OPERAND LATCH w———BKL

1 1
1 RA RB

Exclusive #:
or ZERO

£
DETECT

FSGN R AZRO BZRO R
Bit 62 is~—*\
inverted

EXPONENT 1 ADD (FMU)
ADD/SUBTRACT

ALU 74181 h_§E§_flFDV>
-1 FMU(subtract 1)

AE £::+1 FDV<add 1)

NORMALIZE ADD<——————————
ADDER

7483

AE AE-1(FMU)
‘AE+1(FDV) .If most s1gn.

SELECTOR
CORR mantissa bit 3: 1

(AC53)

E54

1 2 E6 —5 4 2 55 FLT
FSGN

i_ DRIVER

P54
SELECTOR1522('7'8)

; 1
Bit 54 (least Sign exp)
taken from 1524
during floating MUL/DIV

DRIVER

P63 P62 P55 P54
Sign

Figure V.4.3 Result Exponent to

ND-05.007.01

30/3/77/PK/bw.

CPU.

A/S NORSK DATA—ELEKTRONIKK

EXPONENT OVERFLOW/UNDERFLOW

On the EXPONENT ARITHMETIC card 1524, bit 62 (the most
significant bit of the exponent) for both operands is
sign extended.

621 I I I

Sign. L EXPONENT 9 bits
extensioni—“'

This gives us two 10 bit sign-extended exponents which
are led into the exponent adder/subtracter ALU. (Adding
for MPY, subtracting for DIV)

The two most significant bits out of the ALU (AE62 and
AEXT) are checked.

These bits should be equal, otherwise we can not repre-
sent the exponent with 9 bits and it is overflow or
underflow.

RAbZ R362

, i H H
ADD—4' EXP. ALU
SUBw—a’ 74181

i l, /

EQUAL?: NO OVERFLOW, UNDERFLOW.

ND—05.007.01

A/S NORSK DATA~ELEKTRONIKK

OVERFLOW

Exponent overflow indicates that the sum or difference
of the exponents exceeds the capacity of the machine.
A carry is propagated into the sign position of the
floating—word.

The overflow flag is set (OFL,G 1524 to CPU via 1526)
and the result will be the greatest positive or
negative number representable dependent on the Sign
of the operands.

All bits except the sign bit are forced to one.

The output-selector signals (80 — 82) are forced to all
ones, (7), selecting a 1 in all bits to CPU, except the
sign bit.

Divide by zero will also be generate OFL.

”O SO0 ----
OUTPUT SELECTOR

310 1522.1 - 1522.8

0 320
74157 _~<::> OFLO

! lT 1524 TO CPU
Via 1526 TO CPU

EOFL1
Enable Overflow

ND—OS.OO7.01

A/S NORSK DATA-ELEKTRONIKK

UNDERFLOW

Exponent underflow may be the result if a small positiv
number is added to a small negative number. The result
can be so small that it is impossible to represent it by
a NORD—SO floating word.

In this case, the underflow flag is set (UFL,G 1524) and
the result is set to zero.

The output-selector signals (SO—82) are set to 6,
selecting all zeroes through the output—selector 1522 to
CPU.

CZRO (Underflow)
; Select upper input

h H H

1—a-\\\ O

‘OSO0 6
OW \\

\\»_(::> 51 OUTPUT SELECTOR
O___m\\ 0 1522.1 — 1522 8

”O 820
F

74157 l
| 1524 To CPU

ND-05.007.0l

A/S NORSK DATA—ELEKTRONIKK
V—4-lO

MANTISSA MULTIPLICATION

Multiplying the mantissas uses the same circuits as for
Integer Multiply.

56 or 24 bits are multiplied, depending on whether double
or single precision is required.

It is only the 54 or 22 most significant product bits
that are taken care of. The least significant bits, the
bits first shifted out of the Y—adder (YO,1 or Y32,33)
are connected to the SIPO as for Integer but not used.

The AC register keeps the final mantissa after multipli-
cation. If the most significant mantissa bit (A053)
after multiplication is not a l, the mantissa must be
normalized; that is shifted one location to the left.
This shifting is done on the Output-Selector card 1522
by simply selecting the AC register shifted one location
left as input.

32 31 SO ROUNDING
0 O O FLOATING PRODUCT BITS

‘ SFPN
O O l NORMALIZED

FLOATING PROD. AC0
ACl ACO SFPB

Hi1.
UlUlU """ '

A045 1
A046

' ’
.2

ACSl 3 Ci Ci
AC52 3 i

.4 l l
so..__s O 1 -5 P1 P0
31 ~——« OUTPUT .6
Sz_iiMSELEcTOR 1522.7;

l
C53

l
P53 TO CPU

ND-05.007.0l

b1VUH5K UAU+tLtKTHONlKK V-4-ll

FLOATING POINT MULTIPLY (FMU) NORD-SO

Cycle:

C0

C1

C2

C3

B-operand entered into RB-register (1521) via
1523, 1—avRB54 (1523.4)
O-—*'RB55 (BSGN 1521.7)
A‘Operand entered into PISO on 1521 APO,1 if
double precision or AP32,33 if single-—»contr01
of ED2,3 on 1526.

O-—>AC (Y % O——>AC)

Exponent part AP54-63 and BP54-63'—D1524.

56 in double or 24 in single pres. clock-pulse
on CL, 28 or 12 iterations in AC. Same as for
integer multiply.

The mantissa-product which remains in the AC
register is normalized if necessary, using the
selector on 1522 for the mantissa and selects
the reduced exponent from 1524.

Present result on P-lines to CPU.

ND—05.007.01

A/S NORSK DATA-ELEKTRONIKK v~4~12

MANTISSA DIVISION

Dividing the mantissas uses the same circuits as for
Integer Divide.

The B*operand (the divisor) is latched in the RB-
register.

Aligning the divisor is much more simple than in
integer divide, where we looked for the most signifi-
cant 1 bit and shifted it to the most significant RB—
position (RB54).

In floating the divisor is already normalized, a 1 bit
in the most significant mantissa.

The 1 bit in the mantissa is not present in the CPU or
memory, but is inserted on the selector on the B-INPUT
card 1523, when a floating operand is selected. (refer
to figure)

56 or 24 mantissa bits are divided depending on whether
double or single precision is required.

In floating divide it is only the generated qoutient
that is presented back to the CPU. The remainder
(whats left in the AC—register) is not sent back to
the CPU.

The Q or the quotient register (located on the
OUTPUT SELECTOR 1522) keeps the final mantissa after
division.

If the most significant mantissa bit (Q54) after
division is not a l, the mantissa must be normalized;
that is shifted one location to the right.

This is done by generatingiashift pulse (SIKL G 1525)
and shift the Q-register before presenting the
floating quotient to the CPU.

ND-05.007.0l

AVS NORSK DARAELEKTRonx V‘4'13

REMAINDER
l EQUAL 0

ED2 w» QUOTIENT Q1 SEPO
ED3 —”GENERATOR V Q REGISTER

CARRY —e 1526 R0 _1522 UN FORCE
l Q0 DING ¢__

‘ _____________ W L L—~— 1526 A "1"

Q:
[SFQOl l

I CL SIKL I Q53
x I
:i}"” x ////////

u I V

i :
OUTPUT SELECQ

L _________ l§351

The least significant mantissa bi
the rounding circuits on the 1526
this is not done and that is when
represented; when the remainder i

The most significant mantissa bit
normalization always a l, and is
CPU. This bit is disabled on the
card 1524, and instead the least
bit is presented on the P54 line

ND—05.007.

t is forced to a l in
card. In one case
the result is exactly

5 zero.

(Q54) is after
not sent to the
EXPONENT ARITHMETIC
significant exponent
to CPU.

01

/%Vzero if/,i AW 322:2

A/S NORSK DATA«ELEKTRONIKK
V-4-14

FLOATING POINT DIVIDE (FDV) N—SO

CO ~ A and B-operand exponents (bit 54-63) are latched

C1

C2

C3

on the 1524 card.

The B-operand BP mantissa—H>SB (1523) is clocked
into the RB—register (1521) l——>RB54 (the hidden
"1” bit in the most significant mantissa is
inserted) (1523.4)
0—H>RBSS (1521.7)

The AC-register is cleared at the leading edge
at C0.

The A~operand AP mantissa is clocked into the AC~
register Via the X-selector and X—ALU.
AP53~9 X52 —->AC54
l—apACSS (the hidden "1" bit in most sign. mantissd
(1521.7)
Orfi>ACS6 (1524)

The exponents are subtracted 0n the 1524 card.

56 clock pulses if double precision or 24 clock
pulses if single precision gives 28 or 12 sub-
tractions in the X and Y adder.

Each time 2 alternative multiples of the RB-
register are subtracted and clocked into the AC-
register
if Y 2.0 (YCS7
if Y < O (YC57

l) : 4' Y——>AC
0) : 4- X->AC

Two bits of the quotient ED3,2 or ED3,2-1 are
entered into the SIPO register (Q register)

Normalized quotient if Q53 (Most sign. quotient)
is = O.

The quotient in the SIPO, Q register is shifted
one location right,and an exponent reduced by
one is selected on the 1524 card.

Floating exponent E55—* 62—>(3—>P (1522.8)
E54-+ B—+»FC54-—>P54 (1524)

Floating quotient in SIPO
Q—firC-+'P (1522.1 - 1522.7)

ND-05.007.0l

lVb NUHSK DAUkELEKTRONlKK
V*4—15

ROUNDING IN MUL/DIV UNIT.

Perfect rounding: IN N-SO ADD/SUB-UNIT.

First bit'to be discarded
Second.

X2 X1 x0 X-l X—z
l

l fi————J

+ carry propagation and normalization if nessecary
O

O@——-J

Simplified rounding: IN N-SO MUL/DIV UNIT.

We always force the last representable bit (X0) to a 1.

If there was a O in X0, we add a 1 (We add one in 502 of
the cases).

If X was a l, we do nothing (We add zero in 50% of the
cases).

If we take into consideration the value of bit X_
get this percentage: 1W8

25% of cases: We add 1 when we should not (one to much)

X0
= O X_1

= 0

25% of cases:
X0

= l
X_1

= 0
OK

25% of cases:
X0

= O X_1
= l

25% of cases: We did not get rounding when we should
(one to little) X = l 'X = l0 ' *l

ND~05.007.0l

A/S NORSK DATA-ELEKTRONIKK
V-4-16

NOT FORCING A ONE

A one is not forced into the last bit if the result is
exactly represented by the significant Bitg,

2 x 2 = 4 and not 4.00001

In multiply we look at the bits shifted out, and if no
"1" bit is shifted out (all bits zero), we do not force
a l~bit.

If at any time during a division the remainder becomes
zero, (Detected in the X-adder 1521) we do not force
a 1—bit.

BIT‘FORCING CIRCUITS FOR MULTIPLY

THE LAST BIT BACK TO CPU (x)
IQO 0

0 AND

"1” 0
SFPA——+-TO OUTPUT SELECTOR 152;

SOUTO ” ggdi \\\
F/F

Set to_0 if a "1" bit
BIT is shifted out.
SHIFTED 1
OUT

T 1526

MPYO (FLOATING OR INTEGER)

NB: FOR SINGLE—PRECISION THE "1" BIT IS FORCED

TNTO BIT 32 IN THE OUTPUT SELECTOR.

ND-05.007.01

V-S-l

MUL—DIV TIMING

All the operations have the same basic timing. There
are four separate cycles to run through.

CO

Cl

C2

C3

The time it takes for the operands to become
stable.

To clock the B~operand into the B-register and
the A—operand into AC (dividend in division)
and SIPO (during multiplication).

The arithmetic operation takes place.

”Milling” in AC (accumulator),

Repeated additions for multiply,

Repeated subtractions for divide.

Correction cycle.

MPY : Subtraction to get the Sign correct.

DIV : Remainder shifted back
Inverting quotients if necessary.

FMU,
FDV : Normalize: add, subtract exponent and shift

mantissa.

Return result to CPU.

ND~05.007.0l

STARTO 1

CL

CYCLE

ACKL1

BKLl

SELKL

RYM

START

CL

ACKL

BKL,

SELKL

RYM

V*5~2

MUL~DIV TIMING

I, co 1 Cl l
I Y I

O—AC A—vAc g
I

LJ I] L_J+1MUI
l

.._J L} I I L__

\-,_\

OR of all possible start signals.

SFMU Start Floating multiply
SFDV Start Floating divide
SMPY Start Integer multiply
SDlV Start Integer divide

The START signal starts the actual unit and
terminates as response of a READY—signal.

The clock-signal.

One clock-pulse during CO and a number of clock-
pulses during C1. Two clock—pulses for each
iteration.

In C0 the ACKL clears and Clocks the A~operand
into the AC-register.

In Cl the partialproduct or the partial re~
mainder is clocked into the AC-register.

For IMU the subtracted result is clocked into
the AC~register.

Clocks the B-operand.

Clocks correction information on the last clock-
pulse in C1.

Data ready on the CPU~bus.

ND-05.007.01

BPSB'O

[:ZIISQE Vm6-1

5% B‘owmagfl Nam-5o MUL/DII/ UNIT (IR/25K)
DATA FLOW,__,.T_. ,u. WM, w." W,» ,_M__..-~1ACZS Awe;

II II I
w—\\\ Invert EPIF17<39

I
ALU

1523
w—\\\ Remainder «F AP53'D

\ \F3‘ F0 PRIORITY g.
I ENCODER “15%

“W ’ 1523 I525
5M” *0 SHIFT LEFT MATE/X 1%= “SH/‘2 ”I, ,

iii} I’ I571
’ I SHIFT LE’NfiT NTEEJER FT ”7

Direct IL I I I525 l
“smaa

A0
u~-——I~a

0
through Mai 1M0 , I ,

I‘LM.WJ_
I“......H I I

I
7.

.
SHIFT LEFT MATRIX «H WWI I

I! I512 A53 A33
SINGLE I“

w I553 823 2322 ED WV“. FLOAT/N6 MANTISSA mm
3
I

\

I
ZED-Sf IB 1" 1530' IBD'

’ l
3

REMAINDEI? II: I I
‘ I

} DOUBLE/1E? A
”VLFLOATINE "' x was“?

" 'LE ‘ I
I I 1 SE CI P

AM i
5854 5823 B 2 30 r“**********“i_______f*— :5 I

I

N)3 Q

I

I
2 i Fioafing‘ 5 Wqm..;-,

37 I I I? multiply 0
‘

«WM/meme A» 84255. Single 1
«FLOAT/NE, wISII/GIE $3.n ”50031,, I“ 152? I om

|

i

A3312

MI I I I45....,,,,,,,,,,,,,,,,,,, #—————-

-«~————-~m

. . ! 1 l\/ 1/ [VI / / / All / //Y 1/23 1521 o
22:;

: A0 IPISOQZ I \\ D1VIDEND\\ \\\. é {I ‘ SELEcz‘ 1524 ‘
FXXXX X

1526 W 4..
+ I.

......................................“4,4
I

A531, wxszI x21;
ACES AC54 AC23

7I l I I 1 1

3'3 5'2 8‘1 3‘0 5‘2 8'7 8‘0 rtw—m 2853
II II I I?) 1% <2 Izzy/DH!” M256 I” ,Si/l Hi?“ //

SELECT!) E15 SELECTOIE A555 auongm
21 152i

A5154
ESTIMATE

152$
I I 5133 ,
I i I?

E132
r-J—~——:--§-- ,. SUB ///// 1/ f // / // Invert YC57L‘;
I Y“/}\UUL‘K' ADDxxxx X—ADDEE’ }dividcnd é I

I . _ I 152 I /if "69- “”5 QUOTIENT (:‘IEII‘
.

p; 2 k ‘; 1579 ~I> Q0YES?
I........... J Y7,'YD

I
Y7, Yo

I X 4
Floating l 9

Q“? — H

>
.................. . . divide I ~wAMM1

E TO
3 g7 “awn/E ////I>/

S’ngfeWI
—«>AMN2

“It? f3“!5 LEC
E?521‘*“MEXXX\‘

7526 r—WIQO mu Ipy

I
,. Q33

£10
‘ a?

I {454 (134 I {j :13:
56 55 0 I/ (In will:

5,0636»; AGREE: «MM QUOT’ENT I saaza» ‘3I52I
Q33

UDTIENT4AC‘EXT.

I 1524 SIPD-REG1522518 1526
L

SIP0~RI§5. 1522
SQ33

\I‘
J

mw...._iw

I523 WF_L_0¢IJIII@ EXPONENT
Beam?“ ”62.511 a54-a34, (ma—<20, we
I I I I ACSsI—o ROUND,~6\/AIII~II,AI~III2,IQO,ao~a7

I 1526 -
2% g

1521' (AC53‘0)”1 AC Shif‘fec‘i right

A
.3851 3:; \ \\\\ \\ \\ \ \

l
/5/

EEMAINDEE QUOTIENI I”a” ””5 ""/ ACBO-O NW. 1522 my. 1522L77777777“I F554 AC52~2’I—='~ Overflow
WI wPea-az I +P31‘O

not usca‘ 0
j

0 7
I I ‘ I I I5

o/p Ia/Q PRODUCT NORM. QUDTIEHT OVEEEFLOW REMAINDER OUTPUT&
7522-8 1 PRODUCT PRODUCT QUOTIENT 1522.7~.I }SELECTDR

FLOAT. EXP i INTEGER FLOAT: MANTISSA I INTEGER
' Y

L—«- cs4 WWW c231) x x x X = lNTEEIER/MANTISSA MULTIPLY
7~ I

I\
'5’“

7522 III/III, = INTEGER/MANTISSA DIV/DE
I P54 \\\\\\\\= INTEGER DIVIDE

Inn/“I“H \1 a; ”E Pé3‘0 TO CPU

APPENDIX A

ND-05.007.01

APPENDIX A

NORD‘SO OPERATORS PANEL

The idea of the operators panel is to give additional
information about NORD-SO.

The DISPLAY PC push~button (lightened when pushed)
display the Program Counter in blocks of 4K in the
ACTIVE ADDRESS lights. When pushing DISPLAY DATA
REF the data reference address will be displayed
as above.

Thus:

Address O~7777 will light bit 0
lOOOO-‘l777T8 will light bit 1
20000r37777 will light bit 2, Et

The indicator light in the middle field gives further
information about any parity error (light in PARITY
ERROR lamp to the left).

The four lamps to the right indicates in which part
of the 32 bit memory word the parity error appeared.

BYTE O = Bits 0‘7
BYTE l = Bits 8-15
BYTE 2 = Bits 16~23
BYTE 3 = Bits 24-31

The three next lamps indicate in what kind of reference
the parity error occurred.

1. DATA REFERENCE
2. INDIRECT REFERENCE
3. INSTRUCTION READ

Light in the lower field buttons in the panel has
the following meaning:

RUN: NORD—SO is running
STOP: NORD—SO stopped
EXTERNAL STOP: NORD—SO was stopped from NORD-lO
STATUS BREAK: NORD—SO was stopped by an internal

error condition
SIMULATE DATA
& SIMULATE
INSTR: NORD-50 fetches data and instructions

from NORD~lO in simulated memory mode
MEMORY DEPOSIT
& MEMORY
EXAMINE: NORD—SO in STOP mode and NORD—SO

memory locations are examined/deposited.

The operators panel is connected to the 1500 card in
position 332.

ND~05.007.0I

APPENDIX B

ND~05.007.01

APPENDIX B/I

THE NORD-SO TEST SYSTEM

The debugging and maintenance of the NORD-SO is based
on the principles of having a computer test Kanother
computer.

The NORD—SO TEST SYSTEM is running in NORD~10, simu~
lating the NORD~50 memory.

This gives us the possibility of testing the whole NORD~50
CPU regardless of the shape of the NORD-SO memory.

There is always the difficulty when running test programs
that the memory has to be working before the UBU and
the instruction execution can be tested.

Running the test in this way makes it possible to
isolate an error almost regardless of how serious the
error might be.

The error message is printed on a terminal
with information about instruction failing, expected
and achieved results (up to 16384 combinations of data
are used to test one instruction).

Cards may easily be interchanged to observe if the
error follows the card or not. The TEST SYSTEM will
in fact never be destroyed by pulling cards in and
out of NORD-SO, since the program is located in NORD-lO.

The error may be isolated by the use of an oscilloscope
under the TEST SYSTEM, because the failing test is re-
peated with the bit combination failing until the next
test or the next bit combination is wanted by the
operator.

For every test the scope tiiggering signal and debugging
hints are given in the manual.

ND-05.007.01

The TEST SYSTEM responds to the following single
letters commands:

D Display further information about the current error;
a short description and name of the test program,
followed by the code of the instruction.

Continue; continues the test with the next input
data.

Back; restarts the current test with data taken
from the beginning of the input data table.

Next test.

Previous test.

Reset; restarts from the first program in the
test table.

ND-05.007.0l

APPENDIX B/II 3.11.1

EXAMPLES OF NQRD 5O TEST SYSTEM PRINT SET:

10001
NORflwfiO TEST SYSTEM RUNNING

TRQNSFER TEST N04 0
INPUT HQTA 0 000 000 000 000 000 0 000 000 000 000 000

OUTPUT DATA 0 001 000 000 000 000 0 001 000 000 000 000
D

1 T0 SQ COMP.

N
TRANSFER TEST Noo 2
INPUT DATA 0 000 000 000 000 000 0 000 000 000 000 000

OUTPUT DfiTfi 0 001 000 000 000 000 0 001 000 000 000 000
{1
T2 SB/TD

TRANSFER TEST N09 4
INPUT BQTQ 1 111 111 111 111 111 1 111 111 111 111

2 OUTPUT DATA 1 111 111 111 110 000 1 111 111 111 111
I}
T7 LnR/STR
INSTRO 0 000 000 001 001 100 0 101 000 000 000 000

u..__..——......._——_—.__—_...______—__...~..._...__..—.——___.._—__~._——.~—__.—~—~__ ; __ ._ ._...—_-—_ ... un—"m—n-n... ——.—..——.

TRANSFER TEST N01 5
INPUT BQTQ 1 111 111 111 111 111 1 111 111 111.111 111

OUTPUT DQTA 1 110 111 111 111 111 1 110 111 111 111 111
,fl

T78 LDR/STR
INSTR» 0 000 000 001 001 100 0 011 111 111 111 111
N

3 TRQNSFER TEST N04 5
KNPUT BATA 1 111 111 111 111 111 1 111 111 111 111 111
OUTPUT HATQ 1 110 111 111 111 111 1 110 111 111 111 111
C
TRANSFER TEST N00 5
INPUT DATA 1 111 111 111 111 111 1 111 111 111 111 110
OUTPUT UATA 1 110 111 111 111 111 1 110 111 111 111 110
C

... .— m.__._._._..._._.~..___.—_—_—-—....._.~..._u———__«_—.mm~m~~m~_"_m—~qm

TRQNSPER TEET ND» 23
INPUT DQTQ 0 000 000 000 000 000 0 000 000 000 000 001
OUTPUT BATA 0 000 000 000 000 000 0 000 000 100 000 001
I!
T7é RTJ JUMP
ENSTR§ 0 000 000 010 000 100 0 000 000 000 000 000
C

4 TRQNSFER TEST NOo 23
INPUT EATQ 0 000 000 000 000 000 0 000 000 000 000 010
OUTPUT BATQ 0 000 000 000 000 000 0 000 000 100 000 010
{l
T76 RTJ JUMP
INSTRQ 0 000 000 010 000 100 0 000 000 000 000 000

ND—05.007.01

BII.2

TRANSFER TEST N0, 25
INPUT UATA 0 000 000 000 000 000 o 000 000 000 010 000
OUTPUT DATA o 000 000 000 000 000 o 000 000 100 010 000
n

5 TléEL MEMORYC
TRANSFER TEST N0. 23
INPUT DATA o 000 000 000 000 000 o 000 000 000 100 000
OUTPUT DATA 0 000 000 000 000 000 o 000 000 100 100 000

R
TRAN8FER TEST N0. 31
INPUT DATA 0 000 000 000 000 000 0 000 000 000 000 000

6 OUTPUT DATA 0 000 000 000 000 000 O 000 000 000 000 001
n
T17 MEMORY AURESS 1N ADRESS

TUU ARGUMENT TEST N01 53
UPERANU A 1 111 111 111 111 111 1 111 111 111 111 111
OPERANU R 0 000 000 000 000 000 0 000 000 000 000 000
RESULT 1 111 111 111 111 111 1 111 111 111 111 111
CORRECT 0 000 000 000 000 000 0 000 000 000 000 000
n
T40 SET ARU

7 INSTR» 1 010 100 100 000 000 0 000 000 000 000 000

C
TUU ARGUMENT TEST N06 53
OPERAND A 1 111 111 I11 111 111 1 111 111 111 111 111
URERANU B 1 111 111 111 111 111 1 111 111 111 111 111
RESULT 1 111 111 111 111 111 1 111 111 111 111 111
CORRECT 0 000 000 000 000 000 1 111 111 111 111 111

R
Two ARGUMENT TEST N04 1 4
URERANH A O 000 000 000 000 000 0 000 000 000 000 000
OPERAND B 0 000 000 000 000 000 0 000 000 000 000 000
RESULT 0 000 000 000 000 000 U 000 000 000 000 010
CORRECT 0 000 000 000 000 000 0 000 000 000 000 000
n

8 Tlfié JZM JUMP
INQTR+ 0 000 000 010 111 000 0 010 000 000 000 000

C
THO ARGUMENT TEST N0. 1 4
OPERAND A 1 111 111 111 111 111 1 111 111 111 111 111
UPERAND B 0 000 000 000 000 000 O 000 000 000 000 001
RESULT O 000 000 000 000 000 O 000 000 000 000 010
CORRECT 0 000 000 000 000 000 Q 000 000 000 000 001

ND~05.007.01

D11.)

N
THO QRGUMENT TEST N09 131
OPERAND A 0 000 000 000 000 000
OPERAND B 1 111 111 111 111 111
RESULT O 000 000 000 000 000
CORRECT O 000 000 000 000 000
N
THO ARGUMENT TEST NO. 131
UPERAND A 0 000 000 000 000 000
OPERANU B 1 111 111 111 111 111
RESULT O 000 000 000 000 000
CORRECT O 000 000 000 000 000
D
T100 BIT SET
1N8TR+ 0 010 011 000 000 011 1 111 000 000 000 101

0 000 000 000 000 000
1 111 111 111 111 111
0 000 100 000 010 000
0 000 000 000 010 000

0 000 000 000 000 000
1 111 111 111 111 111
0 000 100 000 100 000
0 000 000 000 100 000

10

TWO QRBUMENT TEQT N01 131
OPERQNU fl 1 111 111 111 111 111
UPERQNH B 1 111 111 111 111 L11
HE$ULT 1 111 111 111 111 111
CORRECT I 111 111 111 111 111
D
T100 BIT
INSTR¢ 0

SET
010 011 000 000 011 1

1 111 111 111 111
1 111 111 111 111
1 111 111 111 111
1 111 111 111 111

111 111 111 000 001

_—____.__._—.—___.______...__......._..._.__.-—.....~—_..._....._._—.—._—.—_—._......_—._._—~.—.__..... _._—~———.._—..__—.———

11

dngf—VRGUMENT TEST Mac. 12.7
OPERANH A 0 000 000 000 000 000
OPERAND B 0 000 000 000 000 000
RESULT 0 000 000 000 000 000
CORRECT O 000 000 000 000 000
E
T144 BIT SKIP ZERO
INSTRe O 011 011 000 000 000 0

O 000 000 000 000
0 000 000 000 000
0 000 000 000 000
0 000 000 000 000

000 000 001 000 111

000
()()()
001
010

12

mflfiTlNfi TEST NO 152‘” IZIRQNH fl 0 100 010 000 000
-. AND B 0 100 010 000 000
RESULT 1 111 111 111 111
CORRECT 0 100 010 001 000

" DPERANU 00 000 000 000 000' OPERAND BO 000 000 000 000
FQEiffilJluff‘ () ()()() ()()() ()()() ()()()
CORRECT 0 000 000 000 000

11?0 RAPE
INSTRQ 0 110 100 000 000 001 0

ND-05.007.01

000 0 000 000 000
000 0 000 000 000
111 1 111 000 000
000 0 000 000 000

000 0 000 000 000
000 0 000 000 000
000 0 000 000 000
000 0 000 000 000

001 010 001 010 010

000
000
()()1.
000

()()()
()()()
()()()
000

()(>()
()()()
111
()()()

()()21
000
()()11
001

13

14

FLOATING TEST NO
MOST OPERAND A
MOST OPERANU B
MOST RESULT
MOST CORRECT
LEAST RESULT
LEAST CORRECT

HQST OF'ERANB A
MOST OF'ERAND B
MOST RESULT

1
1
O
O
0
0

C
FLOATING TEST NO

0
O
0

MOST CORRECT O
O
0

LEAST RESULT
LEAST CORRECT
D
T167 MUL
INSTR. 0 000 000
C
FLOATING TEST NO
MOST OPERAND A 0
MOST OPERAND B 0
MOST RESULT 0
MOST CORRECT 0
LEAST RESULT O
LEAST CORRECT 0

' FLOATING TEST NO
MOST OF‘ERAND A 0
MOST OF‘ERANII B 0
MOST RESULT 1
MOST CORRECT 0

0
0

LEAST RESULT
LEAST CORRECT
I]
T166 DIV
INSTR. 0 000 000
N
FLOATING TEST NO
MOST OPERAND A 0
MOST OF‘ERAND B 0
MOST RESULT 0
MOST CORRECT 0

LEAST OF'ERANII A0
LEAST OF'ERAND BO
LEAST RESULT 1
LEAST CORRECT 0
D
T1733 RDFD
ENSTRo 0 110 100

BIIJ}

161
111
111
000
000
000
000

161
000
000
000
000
000
000

001

161
000
000
000
000
000
000

160
000
000
1 1 1
000
000
000

001

165
111
110
101
101

000
000
1 1 1
000

110

111
111
000
000
000
000

000
000
000
000
000
000

100

000
000
000
000
000
000

000
000
11 1
000
000
000

100

011
010
001
001

000
000
11 1
000

000

111
111
000
000
000
000

000
000
000
000
000
000

000

000
000
000
000
000
000

000
000
1 1 1
000
000
000

100

011
010
010
010

000
000
111
000

001

ND—05.007.01

111
111
000
000
000
000

000
()00
000
000
000
000

000
000
000
000
000
000

000
000
111
000
000
000

000
000
111
000

000
000
111
000

111
111
000
000
000
000 OOOOT—‘H

000
000
000
000
000
000 000000

001 000

000
000
000
000
000
000 000000

000
000
100
000
000
000 000000

001 000

111
000
111
111 OHOO

000
000
110
000 0000

011 010

111
111
000
000
000
000

000
000
000
000
000
000

000

000
000
000
000
000
000

000
000
000
000
000
000

()00

001
000
111
001

000
000
000
000

001

111
111
000
000
000
000

000
000
000
000
000
000

000

000
000
000
()00
000
000

000
000
000
000
000
000

000

110
000
111
110

000
000
000
000

010

1 1 1
1 1 1
0 0 0
0 0 0
0 0 0
0 0 0

000
000
000
000
000
000

000

000
()00
000
000
000
000

000
000
000
000
000
000

000

000
000
111
000

000
000
000
000

010

1 1 1
1 1 1
00 0
0 0 0
1 ()0
0 0 0

000
000
000
000
100
000

000
000
()00
000
100
000

000
000
000
000
000
000

000
000
111
000

000
000
000
000

1 1 .L“
1 1 1
0 O 1
0 0 1
0 0 0
0 0 0

001
001
001
()01
000
000

010'“
010
100
100
000
000

0 0 0
0 0 0
0 00
0 0 0
0

'

0 Kiwi

000
000
111
000

000
000
000
000

311.5

FLOQTXNG TEST NO 164
MOST OPERQNB 0 0 100 000 001 000 000
MUST OPERQNB B 0 100 111 111 000 111
MOST REQULT 0 100 101 111 000 111
MOST CORRECT 0 100 111 111 000 111

000 000 000 000 000
001 110 001 110 001
001 110 001 110 001
001 110 001 110 0010000

15 LEAST UPERQNB 00 000 000 000 000 000 O 000 000 000 000 000
LEAST OPERANB BO 000 000 000 000 000 0 000 000 000 000 000
LEQST RESULT 0 000 000 000 000 000 0 000 000 000 000 000
LEAST CORRECT 0 000 000 000 000 000 0 000 000 000 000 000
[I
T172 RMFD
INSTRo 0 110 100 100 000 001 0 011 010 001 010 010

FLOATING TEST NO 165
MOST OPERQND A O 110 000 000 000 000 0 000 000 000 000 000
MUST OPERANU B 0 100 000 001 100 000 0 000 000 000 000 000
MUST RESULT 0 101 101 111 010 101 0 101 010 101 010 101
MOST CORRECT 0 101 111 111 010 101 0 101 010 101 010 101

16 LEAST OPERAND 90 000 000 000 000 000 0 000 000 000 000 000
LEAST UPERAND BO 000 000 000 000 000 0 000 000 000 000 000
LEAST RESULT 0 101 010 101 010 101 0 101 010 101 010 101
LEAST CORRECT 0 101 010 101 010 101 0 101 010 101 010 101
D
T173 RDFD
INSTRQ 0 110 100 110 000 001 0 101 010 001 010 010

..........._.__._,..._..... ._....,........_._.........._.........~..—«-—ua._~~w__»~mm—.~~w~——

C
FLOATING TEST NO 165

j 110 000 000 000
MUST OPERANB A 0 111 011 011 000 111 0 001 .

MOST DPERAND B 0 110 010 010 000 000 0 000 000 000 000 000
17 MOST RESULT 0 101 001 010 111 111 1 111 111 111 111 110

MOST CORRECT 0 101 001 010 000 111 O 001 110 000 000 000

000 000 000 000 000
000 000 000 000 000
000 000 000 000 000
000 000 000 000 000

LEAST OPERAND A0 000 000 000 000 000
LEAST OPERQNB BO 000 000 000 000 000
LEAST RESULT 0 000 000 000 000 000
LEAST CORRECT 0 000 000 000 000 000
U
T173 RDFD
INSTR¢ 0 110 100 110 000 001 0 011 010 001 010 010

0000

9L1 AVAILABLE TESTS COMPLETED

ND-05.007.01

BIII.1

APPENDIX B/III

NORD 50 TEST PROGRAMS PRINT OUT:

wmmsm
; " % INSTRUCTION TEST

MOPP~PA MflNTTOP' ~ 1H
PLOAD ITPPT

'

NEW RUN DATA? (0 0P :1:
N0 PILP UPEAJEJ) wiTH THIS NUMHEP

*«m 1/0~PRROP 000012a AT ADDRESS 00!Sa&1 PiLP GfiQJ;
unT nPPNPn POP SPQUPNFIAL READ , _. f

K¥* JHH AHURTED ¢**
‘ '

— «Pm END $$$ « AT: 000015 ~

*HPHN TERM 7 V
'

QLDAD ITPST
m RUN DATA? (0 0R 1): F
LOUD 0N EPRUR? {0 0R 1): 0
Nfla OF HITR PPR GROUP (<1u): 13 - S _ H
PXPPCTPU TIME PER RUN IS 46970.46! sgpg_g
NU. AP HUNG : 100 ~v_“ .
TIME HPPHPU AFTER DATA READY IS 46970419099.S§§P
NPw PUN DATA? (0 on 1): ‘ ' V

..._._...._......._._._........_..-_.—_-~.—.“awn—u...—..._.__...._._........¢...._M_~.._—__._-_.._.a.._......__.........._..............

— EXTFWJAL STOP ~ AT: OQASSO ~ 2 MUL/DTV PLOATING
*LDAU PTPST ‘ . ' TEST
m HUN HATA? (TYPE 0 0R 1) 1
LOHD 0m PHPAP? (0 AP 1): u
TALPPAHLP MHLTIPLY PPHPH 2 n
TnLPwAHLP DIVIDE ERROR (>0) 1
wn. AP HITS PPR GROUP (<11) §<
RYDKCTED TIMP PPR RHd IS 69;‘ 33359 53
mm. AP RUNS 2 Ion
TIME NEPDPU AFTER DATA READY IS 69¢33$5e090 SEQA
NPw RUN DATA? gTYPP 0 OP 1)

0e

»o

, PHTPPHAL STOP - AT: 004330 ~~ Z “UL/DIV DOUBLE"
PLnAn DPTPST V, FLOATING TEST
NEW 9”” DATA? (TYPE 0 0R 1) R
LOOP 0N ERHHP? (0 OR I): 0TALPHAHLP MULTIPLY PPPAR 2 0
TOLHHAHLE DIVIDE ERRHR (>0): 1 *\
M0. 0P HITS PPR GPAHP (<11): 10 ,PXPPCTPD TIME PPR PHN IS 693339359 swag,?
NO. OF HUNG 2 100
TIME H)?.EDEH AFTER DATA PEHDV IS 6933335i030 SEC
NFW RUN DAT m? (TVPE O OH I)

ND~05.007.01

3111.2

*PL TMEM
$B~C QOOOOOyyfiP z MEMORY TEST
$RUN
THIS IS YOUR NMSO M08 MEMORY TEST PROGRAM
THE PROGRAM OCCUPIES LOCATIONS: 0000000 TO 0001227
LONER TEST ADDRESS(OCTAL): 1230
UPPER TEST ADDRESS<UCTAL§§ 177777
SPECIFY TESTS TO BE RUN BY OCTAL
NUMBERS TERM. BY CR98TUP8 WHEN 0 IS TYPED
77 MEANS ALL TESTS
77

UANT TESTS TU LOOP? 0:ND liYES
1
ERRORS HILL BE REPORTEH IN THE FULLDNING FURMQT
TEST19293&42 {FAILING ADHR.}9{FOUND DATA?7£EXP.DATA}7{TEST NU?
TESTS: iwALK PATT. ADDR.P9£89ME A8 ABOVEbyiREAD/NRITE}

TEST PATTERN 25252525252 18 FINISHEB

TEST PATTERN 125252w2w25 IS FINISHEB

TEST PATTERN 37777777777. I U) FINISHED

TEST PATTERN 00000000000 18 FINISHED

a STOP 0 _~ GT: 000415 —

Z INSTRUCTION
EXECUTE TIMES

*PL 3M2

$CPU
CPU~TIME USEB IN BECOMHS: “” 28«1. \J o

- an” END an»:
*M ND—05.007.01

I
I
I
I
I

.:x :7 "“ ::‘ 2‘: m' I *1)!“ SEX
:ggg” ‘L“M ” u z BENCH—MARK ASEA : $3-0 ,,N
BENCHMARK 2 I *RUN’ 0.03349 94 28 i LDR 1157~0.00000 90 30 ; 5TH I16!

0.80690 94 20 I ADD 11570.00001 94 30 } LDF 2:42
0.90500 90 09 * STF 3i37. .. _ .:~ I FAD 1.830°9967$ 94 00 ' F DD 2'531.00355 96 20 I 929 01821.00000 94 30 : RAFD 03820.99574 94 25 I 1
0.99242 94 28 I PM” 41530.90704 94 30 : EMF 31510.98247 96 28 I EMFD 6:53
0.97063 94 30 I FDV “153
0.97091 96 98 ‘ FDVD 8'36

.02. T I RDF 3:510.96003 94 so I RAD 00720.95532 90 28 I D 01720.94099 94 30 1 A DA f0.93018 94 38 I “FY 5145
0.92892 94 28 I :0; gig;
I .(

. (I. . . g
'0‘J 91,00 94 30

I SLR 0.81
.- . . m,“ , , n l SLRD 0:81TOTAL TIMkkb/IOO) 0040 I JFM_ 0:72

; EXC ' 1‘; 26
-~ 31' I '

\ ;! .._ ‘ ‘ 9 - u: 0..
I no“ 2:15999 Lkh 9*. 0r. 000010 f Jym+ 1:40
I
I
I
I
I

01.1

APPENDIX C/I

NORDm-Tfi MORE-"$0
ENSTRUQTEDNE ENSTRUCTQDNS

DATA TRANSFER iNSTRUCTTONS

MOVING DATA FRO/Vi ONE LOCATION TO ANOTHER IN THE COMPUTER
SYSTEM

Memory “—W Register Block

Ea=D, (B), (X) and! Ea=D+(B)+(X) and I

LDA Load A reg. with (Ea) LDR Load R with (Ea)
LDT Load T reg. with (Ea)
LDX Load X reg. with (Ea)
LDD Load A and D reg. wirh LDD Load FD with (FEa)

(FEa)
LDF Load T, A and D reg.

with (EEa) (Ea + 2)
LBS Load register block
LBYT Load byte

STZ Store zero in Ea STR 0, Store zero in Ea
STA Store A reg. STR R, Store (R) in Ea
STT Store T reg.
STX Store X reg.
STD Store A and D reg. STD Store (FD) in (FEa)
STF Store A, D and T reg.
8TB Store Register block
SBYT Store byte

Reg/s ter “H” Register Trans fer

COPY SR —“’* DR
SWAP SD M DR
TRA EXT reg. —~e> A RiN (Overflow or Remainder reg.) H» R

TRR A ”W EXT reg. ROUT (R) we» Overflow or remainder reg.
(OX Data to-from i/O

device buffer reg.
(DENT (dent code We” A reg.

Register we Memory Exchange

XMR Exchange (Ea) and (R)

EEa = Ea, Ea + 3
SR = Source Regisrer
DR = Destination Regéster
Ea = Effective or cakcuia‘red address

ND-OS .007 .01

CI;2

ARITHMETIC/LOGlC INSTRUCTIONS

MODIFY THE CONTENT OFA REGISTER OR MEMORY WITH AN ARITHMETIC
OR LOG/C OPERATION

Memory ——> Register Block

ADD Add (Ea) t (A) ADD Add (Ea) to (R)
SUB Subtract (Ea) from (A) SUB Subtract (Ea) from (R)
AND AND (Ea) to () AND AND (Ea) to (R)
ORA OR (Ea) to (A)
MPY Multiply (Ea)by(A) MPY Multiply (Ea) by (R)

DlV Divide (Ea) by (R)

FAD Floating Add (FEa + FR) FAD Floating Add (Ea) to (F)
FSB Floating Subtract FSB Floating Subtract sin le res
FMU Floating Multiply FMU Floating Multiply g p '

FDV Floating Divide FDV Floating Divide

FADD Floating Add (FEa + FD)
FSBD Floating Subtract double pres gggggg _y
FMUD Floating Multiply

'

FDVD Floating Divide

Register Block W Memory

ADM Add (R) to (Ea)

Register H Register Operation

RADD Register Add RAD Register Add
RSUB Register Subtract RSB Register Subtract
RMPY Register Multiply RMU Register Multiply
RDlV Register Divide RDV Register Divide

RAF Floating Register Add
RSF Floating Register Subtract
RMF Floating Register Multiply
RDF Floating Register Divide

RAFD Double prec. Floating Reg. Add
RSFD Double prec. Floating Reg. Subtract
RMFD Double prec. Floating Reg. Multiply
RDFD Double prec. Floating Reg. Divide

FR = NORD-lO Floating Register: T, A and D.

ND-OS .007 .01

Cl.3

ARlTHMETiC/LOGlC lNSTRUCTlONS

RAND Register AND RND
RNDA
RNDB

REXO Register exclusive OR RXO
RXOA

RXOB

RORA Register OR ROR
RORA
RORB
SZR

Argument Ins true t/ons

AAA Add Argument to A ADDA
reg.

AAX Add Argument to X reg.
AAT Add Argument to T reg.
AAB Add Argument to B reg.

ADCA
XORA
ANDA
ORA

ND—OS.OO7 .01

Register AND
Register AND, use complement of (SRA)
Register AND, use complement of (SRB)
Register exclusive OR
Register exclusive OR, use complement
of (SRA)
Register exclusive OR, use complement
of (SRB)
Register OR
Register OR, use complement of (SRA)
Register OR, use complement of (SRB)
Set Register zero

Add Argument to (R)

Add complement of argument to (R)
Exclusive OR
AND
OR

CI.4

DATA MANIPULATION INSTRUCTIONS

Shift Instructions

SHT Shift T register
SHD Shift D register
SHA Shift A register
SAD Shift A and D register

Zero Input, Right, Left

Bit Instructions

BSET One, Zero, BCM, Bit no.
53R

Argument Instructions

SAA Set argument to A reg.
SAX Set argument to X reg.
SAT Set argument to T reg.
SAB Set argument to B reg.

Convert Floating Instructions

DNZ Convert floating to integer

NLZ Convert integer to floating

SHIFT (R); Rat, Arithmetical, Right, Left
SLR, SRR, SLA, SRA

SHIFT DOUBLE REGISTER; Rot, Arithmetical,
Bidet, Left
SLRD, SRRD, SLAD, SRAD

BSET

SETA

SECA

FIX
FIR
FIXD
FIRD

FLO
FLOD

One Zero, BCM, Bit no. R

Set argument to R

Set complement of argument to R

Convert floating to integer
Convert floating to rounded integer
Convert double pres. floating to integer
Convert double pres. floating to rounded
integer

Convert integer to floating
Convert integer to floating double

MIN instructions .' Increment memory cell, ship if zero.

MIN Ea

ND—05.007.0l

MIN Ea

CI.5

SEQUENCiNG ENSTRUCTIONS

INSTRUCTION TRANSFERR/NG PROGRAM EXECUTION FROM CURRENT
LOCATION TO SOME OTHER LOCATION IN MEMORY

JPL Return Jump P +1~a~L RTJ R, Ea SaveP+1———a> R
Jump to Ea

JMP Non-Return Jump RTJ O, Ea No save
Jump to Ea

Conditional Jump

JAP Jump if (A) > O JRP Jump if (R))0
JAN Jump if (A) < O JRN Jump if (R) <0
JAZ Jump if (A) = O JRZ Jump if (R) = 0
JAF Jump if (A)I= O JRF Jump if(R)#0
JXN Jump if (X)<O
JXZ Jump if (X) = 0

Add and Conditional Jump

JPC Add 1 to X and jump if JPN) Add (M) to R and jump if
(X) >0 (R) >0

JNC Add 1 to X and jump if JNIVI Add (M) to R and jump if (R)
(X) <0 <0

JZM Add (M) to R and jump if (R) = O
JFM Add (M) to R and jump if (R) #0

Skip Instructions (skip next instruction if specified condition is true)

smw:(sa)>,<,=,#,mm 'SKiPIF (R);>,<,=,#,ARG
(R); 2, <, =, #,--—ARG

RSKP (BIT SKIP) if specified bit 882 Bit skip on zero
equals zero, one, DR BSD Bit skip on one

Add/So(firm? a», :3:

gage; dam.
r andWifi‘ifW. ~r:

Add/mmram Homing 0%w W sfi® if
result: 2 0, < 0, a O, 790.

Add/Subtract Double precision register and
skip if resuit: E 0, < 0, = O, #0.

ND-05.007.01

CI.

Emma imtructions

EXR (SR) EXC 0, Ea Execute (Ea) as an instruction
Execute (source register) EXC 1, R Execute Ea as an instruction
as an instruction Ea=(X)+(B)+D

kwTRIM.INSTRUCTIONS

iON interrupt system ON
iOF Interrupt system OFF
PON Paging system ON
POF Paging system OFF
WAIT STOP

Give up priority if
interrupt system is on

STOP Stop N-50

ND-05.007 .01

A... .. “LVML‘I. V, 4...;

FORTRAN PROGRAM NORD 50

~ 0000 00 0TH CBMPILEO
$UBL§ET
$CUM i5

?®
E
NSF? BFERK HT

is U

i pm!

'3
I

10
L=J®K

1
1 VIP-Jr

I=L+1UU

15
14

W:I*L¢5K“15

15
16
1?
ED

END

i'L'I

h}

1—!)

FL':

FL]

FL"

if}

4;.

Qj

I'I_'I

['13

F1)

H

r—A

-.j
I3".

1:]

“-J

"~.]

:3";

L0

L2.

2'_x_'1

FL}

H

.
‘

m

{J}

0;!

{J}

110

:_u;l

"_._‘x

1;.)

['3

VJ)

(‘L'I

Fl)

III

F!)

H;-

F

31316

['1]

FL]
1'3]

F1;:
m

13.]

{‘13

L1}

$9.

F1}

{'13

{'0

W

MFG

'1';

Fa}

HWUWWU

)j’w

P‘-

N1

m

H)

m

{'13

['0

F0

IL»)

{'13

[‘0

FL"

['13

{‘0

F0

.5;

J3.

D3

0;:

00001040000

00000000000

E: 4 04 0 0 1 0 0 0 0
34100030000
34140030000

003671330fl7

34540000008
00357130010

141U0131313
00367188011

30500400144
00367120013

34540600001
003?0130011
14040131213
0036? 30013

00001000000

00000000000
00000000000
00000000000
00000000000
00000000000
00000000000

37????F????
00000000000
00000000000
00000000000
00000000000
00000000000
00000000000

0

ND—05.007.0l

10
?G
?9
AU
50

as

r-

»w

H H

g
m

I? N
a0%"0K
I¥L¢EOG
Mfli~L%(K~§)
EN D
ED?

003%
EN

WTJ
:3 i',“

STEP
EETO
SETH
SETH
SETH

SETH
STE

EETH
ETR

RMU
3T?

HDDH
3T9

0000
MP?
03B
ETP

LU I) w I: 1'r3

7%"
$49

003
00g
85?
019
DE?
339

00009 g

00$ 00

00000
10000
80000
30000

00001
123 BUG?! Q5;

0000&
0010, 05:

13! 13
mm. as,

Dfl144
00139 ' BE: 9

00001
flfllle
125 13

139
139
139

US!

135 00133 05f

FW .,
E 0000s 9

AYFLNULA L/LLJ.

@FTN'

NOQD FTN‘léSQC
$OBLIQT
$°EFMAW
SCLC
$COM FOLA;TE”H:0

4

INTEGED
INTEGE”
IHTEGE”
IUTEGE”
INTEGE?

1 l7
1 32
1 14
1 1 135002
2 1 0
3 20
4 16

10 J=1
4 1 170401
5 1 4615
6 16

20 K 2
6 1 170402
7 1 4616

10 16
30 L=J*K

10 1 44616
11 1 120615
12 l 4617
13 16

40 I=L+100
13 1 170544
14 1 60617
15 l 4620
16 16
16 1 44616
17 ' 1 172777

50 M=I-L*(K—l)
20 1 120617
21 1 4621
22 1 44620
23 1 64621
24 1 4622

BID
25 1 135001
26 20
27 7 227
27 11 23
52 7 52
52 21

LOCAL IDENTIFIEVS -------

UAWIABLE J 43
”AWIABLE K 44
V421ABLE L 45
VAWIAELE I 46
VAWIABLE M 50

TOTAL LOCAL DATAQDACE

- CDFL1DM

EYTEDNAL

FORTRAN PROGRAM NORD 10

IDENTIFIE98

PFFE” EN C ES

1 23

ND—05.007.01

10
20
30
40
50

”M 10(0)
*w "FOLA"

11AIPJ
JPL I * 002
STZ * 000

BRTEN
LABEL 10

8AA 001
STA)B" 163

LABEL 20

SAA 002
CTA)8 ~ 162
LABEL 30

LDA)B " 162

MPY)B- 163

STA 1B - 161
LABEL 40

SAA 144
ADD 1B * 161

LABEL 50
LEA 1B '162

AAA - 001

MPY ’8 - 161
STA JB * 157
LDA)8 “ 160

SUB)8 ~ 157
STA 18" 156

JDL I * 001
BLEAV

2

31

6 (OCTAL)

J=1
K32
L=J*K
I=L+100 1M=I-L*(K—1)
END
ED?

******arise*SENDUSYOURCOMIVIENA’Slil *****+*t*~

? ? Are you frustrated because of unclear informant»:

‘
»

9

o in this manual? Do you have trouble finding
things? Why don’t you join the Reader’s Club and

, send us a note? You will receive a membrs‘ I:
f? 7 card - and an answer to your comments.

5 , o -

Please let us know if you
i '

/‘ find errors '
‘ cannot understand infomation \. / \’ cannot find information Q 0 \' find needless information -

Q

Do you think we could improve the manual by rearranging the
contents? You could also tell us if you like the manual!!

/’ \
*la: a: * at 'k 9: * s: HELPYOURSELFBYHELPINGUSU * * * * * * * * *

Manual name: N_ORD ~ 50 Functional Description Manual number: ND~05. 007. 0 i

What problems do you have? (use extra pages if needed)

Do you have suggestions for improving this manual?

Your name: Date:
Company: Position:
Address:

What are you using this manual for?

‘ Send to: Norsk Data A.S.
Documentation Department

_ 9.0. Box 4, Lindeberg cm ——5
9l 10, Norway

Norsk Data’s answer will be found on reverse 9d:

Answer from Norsk Data

Answered by Date

Norsk Data A.S.

Documentation Department

P.O. Box 4, Lindcbcrg Géxd

Oslo 10, Norway .

\7

— we make bits for the future

g» .
NORSK DATA A.S BOX 4 LINDEBERG GARD OSLO 1O NORWAY PHONE: 30 9O 30 TELEX: 18661

