NORD 50
FUNCTIONAL DESCRIPTION

NORSK DATA AS

"""".CQ 00000 000000000

NORD 50
FUNCTIONAL DESCRIPTION

REVISION RECORD

L

Revision Notes

|

1

11/77 Original Printing

Publ. No. ND-05.007.01
November 1977

900 006 0080880

S2te 200 66000800¢ NORSK DATA AS.

200000000 86 e

50000600 000 P00

€99 ©8223 Sosens _

06® ©0® 0600 Lorenveien 57, Postboks 163 Qkern, Oslo 5, Norway

MAIN CONTENTS

F
Section:
I INTRODUCTION
II NORD-50 FLOATING NUMBER REPRESENTATION
I11 NORD-50 CPU
v EXTERNAL ARITHMETIC C-RACK
A EXTERNAL ARITHMETIC A-RACK
Appendixes:
A NORD-50 OPERATOR'S PANEL
B NORD-50 TEST SYSTEM
C NORD-50/NORD-10 COMPARISON
4+

ND-05.007.01

SECTTION

INTRODUCTION

ND-05.007.01

I

I INTRODUCTION

NORD-50 is a 32 bit special purpose computer designed to be a
slave processor to the general purpose NORD-10/S computer.

The NORD-50 consists of 3 19" racks located in a cabinet identi-
cal to that of NORD-10/S.

Of the three racks named, the A, B and C rack, the NORD-50
CPU occupies the B-rack with 32 modules (148 x 156 mm).

The A and C racks contain the "external arithmetic" executing
instructions not performed in the NORD-50 CPU.
""" NORD-50 may be connected to physically the same memory as NORD-10/8
(located in the NORD-10/S cabinet) via one port in the multiport
memory system (shared memory), or to a separate multiport memory
system as a private memory.

The NORD-50 can execute the following instructions:

Data move instructions
Arithmetic/logic instructions
Data Manipulation instructions
Sequence or branch instructions

£~ b

The NORD-50 does not have
- Input/Output instructions
- Interrupt

and

- Memory Management instructions.

These functions are controlled by the NORD-10/S.

ND-05.007.01

SECTTION I 1

NORD-50 FLOATING POINT NUMBERS REPRESENTATION

ND-05.007.01

11-1I-1

FLOATING POINT NUMBERS

A floating point number F may be represented as follows:

The number is represented by two groups of bits, the
EXPONENT E and the MANTISSA M.

The floating point value is the product of its man-
tissa and base 2 raised to the power of its exponent.

NB'! In IBM terminologi the exponent is called the
characteristic and the mantissa is called the
fraction part of the floating number.

FLOATING POINT FORMAT

NORD-50 operates with 2 floating point formats, one
with 22 bits to represent the mantissa (single pre-
cision) and one with 54 bits to represent the mantissa
(double precision).

The exponent in both formats consists of 9 bits.

31 30 22 24 9
S E M <¢——— Single precision format
9 bits
of EXPO-
NENTS Double precision format
includ-
ing sign l
6362 5453 32 2
S E M M
Sign bit Radix point of

of MANTISSA MANTIGSSA

0=Positive

1=Negative

\ AN

~
IN MEMORY: CA CA+1
IN REGISTERS: R R+1610

R+(R+16) = Floating Double-Precision Registers (FDR)

CA means Calculated Address.

ND-05.007.01

I1-1-2

MANTISSA

The sign of the mantissa is contained in bit 31 for
single—- and bit 63 for double-precision numbers.

The binary radix point is assumed to be at the left
of the highest order bit in the mantissa, so the

magnitude of the mantissa is always less than L.

The most significant bit in the mantissa 1s always
set to a 1 and the floating number is then said to be
normalized.

The value of a normalized mantissa is then between
]

3 and 1.
Because the most significant bit in the mantissa 1is
always a 1, it needs not be represented directly and

the bit can be omitted to give a better resolution of
the mantissa.

A floating number in memory or in floating registers
does not contain this "1" bit, but the "1" bit is
inserted in the External~Arithmetic before floating
operations, and is removed when the floating result
is returned to the CPU or memory.

EXPONENT

The 9-bits EXPONENT field allows exponent values be-
tween -255;5 (-377g) and +25515 (377g). In NORD-50
25610 or 400g is added to the exponent, leaving an
offset or biased exponent,

For example, an exponent of =321 would be repre-
sented by 25639 3219 =224319. An exponent of +100p
would then be 25639 +1001p0 =35630 -

Because of the blas, the correspondence between
actual values and coded representation is as follows:

ND-05.007.01

11-1-3

REPRESENTATION
ACTUAL VALUE
BINARY: OCTAL: DECIMAL:
Rit:30 22 Single prec.
62 54 Double prec.

4///////////////j(//

Z ' EXPONENT OVERFLOW Z
PPl iiddddlddiddsd
111 111 111) 777 +255
111 111 110 776 +254

RANGE 402 + 2

100 000 001 OF 401 + 1

\ USABLE

100 000 000 EXPONENTS 400 0

011 111 111 377 - 1

011 111 110 376 - 2
g;%%y}/%%%%/%g%épvy//////////////AZ///%/////////////E?%é22}
7 EXPONENT UNDERELOW 7
407%40%409740740//no7%47//407x07%407A477/A077/

If the actual value of the exponent is equal to —2561p
(-400g), meaning a total floating number of less than
2256 (gince the mantissa is between 3 and 1) the
floating number will be assumed to be 0, regardless
of the sign or mantissa bits.

As the table indicates: When the exponent is decreased
towards its minimum representable value, the binary
sumber 1in the exponent approaches Zero. Zero has

0 in all bits, both in the exponent and the mantilssa.

An exponent overflow occurs if the exponent exceeds

+255, and an exponent underflow occurs if the exponent
is less than -255.

ND-05.007.01

BIT:

TI~1-4

EXAMPLES OF FLOATING NUMBER REPRESENTATION:
(single precision)

31| 30 22 21 0
ol1 111 111 11 11 111 IMAX: 1.15792:1077
ol1 oo0 o001 111 11 111 |lo.999:27 127.999
ol1 o000 o001 11p od| o000 |0.527 64
ol1 ooo o001 1001 11 111 0.999:26 63.999
ol1 oo0 o001 100 od| o000 0525 32
ol1 000 o001 oW1 11 111 1/0.999:2° 31.999
ol1 o000 o001 O10 og| o000 |052° 16
ol1 o000 o001 o001 11 111 {/0.999:2% 15.999
ol1 o000 001 o0op od| o000 |l0.52% 8
ol1 ooo o000 111 11 111 [l0.999-23 7.999
ol1 o000 o000 11 od| o000 |[0.523 4
ol1 o000 o000 101 11 111 110.999:22 3.999
ol1 ooo o000 100 00| 000 [|0.5:22 2
ol1 000 o000 oO11 11 111 |lo.999-27 1.999
ol1 o000 o000 o010 o0 o000 |o0.52 1
ol1 ooo o000 oO1 11 111 ({09920 9.999
o|1 ooo o000 oop 00} o000 |[0.520 05
olo 111 111 11t 11 111 |l0.999:2=1 0.4999
olo 111 111 1o oo| o000 |los2=! 025
olo 111 111 101 11 111 [10.999-272 0.2499
olo 111 111 100 00| o000 ||05272 0.125
olo 111 111 o1t 11 111 ||0.999:2—3 0.1249
olo 111 111 ot oo ooo [|05273 0.0625
olo 111 111 o001 11 111 110.999:2—% 0.06249
olo 111 111 000 oq 000 |l052~% 0.03125
olo o000 o000 o010 oo o000 |MIN: 8.63617-10778
olo oo0 o000 o000 00| 000 |0
110 o000 o000 o010 oo 000 |IMIN: —863617-10778
11 111 111 1 1 111 |Imax: —1.15792-1077

_)
? Exponent % Manfissa
SIGN Hidden 1"
BIT BIASBIT bit in mantissa

AND-NE ANT7 N1

SECTON ITTI

NORD 50 CPU

Section
I11.1
ITI.2
IT11.3
IT11.4
111.4.1
I11.4
I11.4
I1T.
I11.
IIT.
III.
IIT.

wn

ITT.
ITT.
ITIL.
ITIT.
III.

O O co ~J ~ ~J -~ ~I (o)
. - . -

111.9.2

I11.10
ITIT.11
ITT.11.
I11.12

ITT.13

IT1.14

.
(S N P ped
.

DETAILED CONTENTS
R Rk T

NORD 50 CPU GENERAL

NORD 10/NORD 50 CONNECTIONS
NORD 50 MEMORY CONNECTIONS
NORD 10/NORD 50 COMMUNICATION
NORD 10/NORD 50 COMMUNICATION DETAILS
NORD 50 memory examine/deposit
Simulated memory mode

NORD 50 REGISTERS

NORD 50 FIXED POINT ARITHMETIC
NORD 50 INSTRUCTIONS

Memory reference instructions
Indirect addressing
Inter-register instructions
Argument Instructions
INSTRUCTION EXECUTE SEQUENCE
NORD 50 MAIN STATES

Main states memory reference
instructions

Main stats inter-register or
argument instructions

TIMING SEQUENCE
MEMORY PROTECT SYSTEM
PROTECT ADDRESS SETTING

CPU AND MEMORY OPERANDS TO EXTERNAL
ARITHMETIC

RESULT FROM EXTERNAL ARITHMETIC
BACK TO CPU

CPU OVERVIEW

ND~05.007.01

Page
I1I1-1-1
I11-2-1
ITI-3-1
ITII-4-1
I11~-4-3
TII-4-7
IIT-4-8
I1I-5-1
I1I-6-1
I11-7-1
I11-7-1
I11-7-6
I11-7-9
III-7-15
I1I1I-8-1
I1I-9-1

I11-9-5

I11I-9-9

II1-10-1
I1I-11-1
ITI-11-4

I111-12-1

I11-13-1
ITI-14-1

I11-1-1

I11.1 NORD~-50 CPU - INTRODUCTION

The NORD-50 CPU contains the main registers and arithmetic, the
communication registers NORD-10/NORD-50, memory address and data
1ines and line driver/receivers for external arithmetic.

These functions are organized on three different circuit boards,
each handling four bits:

Address Arithmetic 1501
Register 1502
Arithmetic Buffer 1503

The 32 bit CPU thus uses eight of each board, making a total of
24 boards.

The timing and control section of the CPU uses eight different

boards:
NORD-50 I/0 Control 1500
NORD-50 Controller 1504
Register Address 1505
Cycle Counter 1506
Arithmetic Control 1507
Chip Select 1508
Instruction Control 1510
Timing Control 1519

Figure ITIT.1.1 illustrates the data flow between NORD-50 CPU
(B-rack) and the external units.

ND-05.007.01

[*1°111 @2andtg

‘Asowsly pue
0L-p 01 U0I328ULIOT [-] B 8AID 0
ZE-8Z20 01 pd1osuuo? 84e S1g 988y [
pued

si101eu9d (O WOL/0}
jos3uod ‘o exeqd

£9-0N MOVY-O NOHd ViVva
£9-0 NgONV £€9-0 NV 30VH-D Ol Vivd

_ JBpNg SRBWMILY SE0GL gq.g9 6595 §5-25 LG8 Ly £v-0v 6e-9€ ge-ze Lle
siosibay 1ZOSL A N A
_ aneWyILY $534PPY 11061 _ 4 : : A 4 & 4
|
I " “ ﬂ “ ! I ! ”
! 1OHLINOD NdD | [i i ﬂ | ! |
1 | Lese | LTve | €T0T | 6191 “ Si-2L | Li-8 | Ly ; €0 2Lig
! | 3 I M | M | ﬂ A i A 1
Y AR ¥ ¥ Y O R v 4 v 3
o m @ o & m o & @ o a @ & o & &
12 |8 |8 |8 |2 |8 |¢ 2 2 2 2 2 g 2 &
N s} .mAJ wuv o — - =z % @ U ~ o =] w o m. i m w mu_ XY m -
o |3 o s = 2 ® ; S 3 Q Q It =]] o
°© |13 s |2 1§ |2 |2 |3 . o > N » N N
= « O 3 w . a2 @ ~ o a » w N T
O [e) o N @ w e w - s - - =
<} < Y 3 i o - - -
] o |3 3 g 8 20z 2 18 = o) S 3 3 >
35 = @ pr = o h 0 w Q @ & bx}
3 |2 h o e |= = | ~ @ @ - ‘ :
o o . 3 W [S] JN
se | e | oe| oz | sc |z | oz | sz |we | ez | zz |tz] oz 6L | 8 | L1 |9l | S|V gt |zt ovl s 8 | ¢ 9 s| v| el 2 L
g 4 g s g R g e P . A P S P Py
- - -~ -~ -~ - -~ - -~ ~ -~ -~ - - -~ - ~
s T - S e o R e S - - - < -
_~ e - \\ ~ - - ~ - g - -~ s - - . \\ - \\ -
1 f 1 i 1 _ _ ! _ ~ 1 (, f f _ 1 f 1 i f { f f i
| _ i | | _ i i |
_ _ (] ! !] | | ¥ w “ v w | v M M v _ ” v _ A | o
(W) VIVG ABOWIW | Ioie-8z | | LTve) _ £e0z | i 61-91 | oseer ;e _ oy | I eo _
| | | | |
i | [| 3 | ! . <@
(V) SS3HAAY AYOWIW | “ ON ! | ON ! ON “ 61-81 | [stet “ bs " Ly “ 1 B0 siig o
I i | i % .
1 { | I |
(a9) OL-N WoHd/0L | Lostel L. LvB Lo, LY " “ . E0 | "* stzL I, 118 " “ L LY “ |, €0 N
{ | I f I i | ! !
! _ I i ! | “ I _ | _ | ! i i | L
Ly B v Lo I Ly Lo Loy =
i ! I I !
| ez | LTV | €202 “ 6L-91 | st | s | v | €0
| “ ! | | | _ | L8
i f i i |
v v v \ \ v y U
£9-09 659G 8528 R e £v-0v 6€-9¢ ge-z€

£9-0 d MOVH-V WOHd4 Vivad
£9-0 d8 ONV £€9-0 dV 20VyY-¥v OL Vivd

IT1-1-2

S2Up) [eUISIXT WO1H/O0 [MO]S BIeq (4oeY-8) NdD 05-THON

I11.2

1i1=-2-1

NORD-10/NORD-50 CONNECTIONS

NORD-10 looks upon NORD-50 as an 1/0 device connected to the
NORD-10 I/0 system.

There are two NORD-50 interface modules in NORD-10, the 1071
card for data and control and the 1532.I1 card for address.

The communication between NORD-10 and NORD-50 in addition to
common memory takes place on two differential lines, one for
data (16 bits) + control (4 bits) and one for 1/0 address

(6 bits).

At start-up time the start address and stop conditions are
transferred to NORD-50. When the NORD-50 stops, a Status
Register indicates the stop reason. The Status Register is
available on the communication lines.

If the interrupt system in the NORD-10 is turned on and the
NORD~50 interface 1s enabled for interrupts, the NORD-10 may
execute in parallell with the NORD-50.

Only when an interrupt occures will the NORD-10 be engaged to
identify the interrupt source,

In NORD-50, three modules are taking care of the communication

with NORD-10, the 1532.IT1, 1531 and the 1532.1 module located
in the C-rack.

ND-05.007.01

ITI-5-1

ITL.3 NORD~-50 MEMORY CONNECTILIONS

NORD~50 may be connected to physically the same memory as NORD-10
via one port in the multiport memory system (shared memory) or
to a separate multiport memory system as a private memory.

Max. 4 Mbytes Max. 512 Mbytes
A P A
y ~ I
PRIVATE NORD-50 SHARED PRIVATE NORD-10/S
cPU MEMORY MEMORY MEMORY

32 bit Data High speed 16 bit Data

Data channel

;;;;; 16 bit Data

NORD-10/S CPU

NORD-50 CPU

Control
1/0 SYSTEM

Q S

NORD-50 COMPUTER SYSTEM

]

As an option, up to 8 high speed static memory modules may be
installed in the free positions in the C-rack as private NORD-50
memory (Maximum 32K x 32 bits).

NORD-50 supplies differential address lines of 20 bits + 2
control signals to the port via a 1 to 1 cable.

For carrying the 32 bit data word, two cables with differential
lines are used, onme for bits 0-15 plus 2 parity bits, and one
for bits 16-32 plus 2 parity bits.

In memory (the multiport memory system), NORD-50 occupies one
port out of four. The remaining three are used by NORD-10, DMA

mass-storage devices, and the third may be used by a second
NORD-50.

The address area each port can see is set up by lower and upper
1imit switches on the address module (1083) in the multiport
system., In this way, NORD-10 and NORD-50 can have locations of
private or shared memory.

ND-05.007.01

The priority for NORD-10 or NORD-50 requests are fixed and deter-
mined by the physical position of the data receiver/driver module
and the address receiver module in the multiport rack.

The 32 bit memory word is divided between two 18 bit memory
banks with identical memory addresses. The bank in the upper
multiport rack takes care of bits 16-31, while the bank in the
lower rack takes care of bits 0-15.

NORD-50 receives two sets of data ready/address ready signals
from the memory modules in the two banks. These signals are
supplied via the data module (1081) to NORD-50 where the signals
are latched, waiting for the last one to appear.

Interleave

For NORD-10 to access a NORD-50 word in shared memory as two con-—
secutive locations, the NORD-10 address has a two-way interleave.

To achieve a two-way interleave, the address bits in the address
cable from NORD-10 to the multiport are shifted one position to the
right:

Normal address:
17 13 12 0

bank decoding | displacement within 8K module l

Interleaved (shifted) address:
0 17 14 13 1

bank decoding | displacement within 8K module \

Address bit O being the most significant address bit, will now

determine the bank selection (The difference in start address ftor
the two banks will be 128K).

For NORD-10, two banks will alternately be accessed if consecutive
addresses are issued. For NORD-50, each bank is accessed in
parallel.

ND-05.007.01

I11-3-3

NORD~10 access:

Start Start

BANK O addr. BANK 3 addr.
NORD~10 WORD O XX WORD 1 XX +
DATA/ 128K
INSTRUCTIONS WORD 2 WORD 3
NORD-50 WORD O (Bits 31-16) WORD O (Bits 15-0)
DATA/ . .
INSTRUCTIONS WORD 1 (Bits 31-16) WORD 1 (Bits 15-0)

An even NORD-10 address (address bit 0 = 0) will access NORD-50

bits 31-16, while an odd NORD-10 address will access NORD-50 bits
15-0.

ND-05.007.01

TT1-3-4

1/0 ADDRESS—(®)

™

| MEMORY DATA+PARITY+CONTROL

BIT 16-34

__ MEMORY DATA+PARITY+ CONTROL

BIT 0-15 ’

\ﬂ

‘

DATA+CONTROL—(e-+(4)

NORD-10 - NORD-50
CONFIGURATION

Figure III.3.1

ND-05.007.0Q1

s | |
TGRO-50_Lkt=
<”"mummummu)
1 MUL//DN/“”/'J
A=
T
il \%WH
| e 88
i HHH!‘
n/\:” .l“
e
&\l\

PR s S S s S N

| MEMORY ADDRESS+CONTROL-18) (2)

\

i
Ia

TIL.4

I1I-4-1

NORD-10/NORD-50 COMMUNICATION

In NORD-10, the Write Interface Control Register (WIC) is used
for starting the NORD-50 (bit 2), and the Interface Status (IS)
is used for checking the state of NORD-50 (bit 3). Both registers
are located on the 1071 card. Refer to figure IITI.4.2.

The 10X instruction IOX WIC = IOX 33 writes the contents of the
A-register into the WIC register, and the I0X RIS = I0X 32 reads
the IS-register to the A-register. I0X address bit 0 determines
the transfer direction.

The I10X device addresses used are valid for the first NORD-50
in any NORD-10/NORD-50 system.

Tn NORD-50, the following 16 bit registers are located on the
1531 card:

1. The NORD-50 Modus Register, Written by IOX MOD50, I0X 31
2. The NORD-50 Status Register, Read by I0X RSTN50, I0X 30

The Modus Register is loaded as part of the NORD-50 start-up
procedure, and keeps the stop conditions for the NORD-50. 1In
addition to the stop conditions, the EXAMINE/DEPOSIT and SIMULATE
MEMORY modes are set here.

The Status Register is read after the NORD-50 has stopped to find
the STOP reason.

In addition to these two registers, the following 32 bit readable
or writable registers are situated on the 1501 card (Address
Arithmetic) in the NORD-50 CPU.

READABLE:

PC: The NORD-50 Program Counter points to the next instruction.

TA: Test Address Register, keeps the last memory reference address.

TD: Test Data Register keeps the last Data to/from memory.

SA: Simulate Address Register (only read in SIMULATE MEMORY mode).

WRITABLE:

SA: The Start Address Register First Instruction Fetch.
BP: Break Point Register 1 (Lower address limit).
BQ: Break Point Register 2 (Upper address limit).

SD: Simulate Data Register (only written into during SIMULATE
MEMORY mode) .

ND-05.007.01

I11-4-2

All these registers are read/written by means of two I0X in-
structions, each transferring 16 bit in parallel. If device
address bit 1 in the IOX instruction is set to zero, the 16

least significant bits (bits 15-0) are transferred. (Transfer
direction = bit 0). TIf bit 1 equals one, the 16 most significant
bits (bits 31-16) are transferred.

More information is given in the NORD-10/NORD-50 Communication
System Manual.

ND-05.007.01

111.4.1

T11-4-3

NORD-10/NORD-50 COMMUNICATION DETAILS:

As an attempt to explain the NORD-10/NORD-50 communication in
som details, the signals on figure IIL1.4.1 are listed below.

Modules in NORD-10:

1532.11

BA: NORD-10 address bus carrying the 12 lower bits of the
instruction register during an IOX instruction.
These bits, also referred to as the device address bits,
indetifies the I/0 interface register to be read or
written into during the I0X instruction execution.

M: 10X address bits on differencial lines.

1071 (Also refer to figure 111.4.2)

BD: NORD-10 1/0 DATA bus (16 bits). Equals the A-register
during an 10X output instruction (IO0X address bit O=1).
Equals the contens of the 10X addressed register at the
end of an 10X input instruction (BAO = 0).

D: Data bus on differencial lines.
DEVC: COMPLETION signal from NORD-50 (1519) indicating that

NORD-50 have just stopped. Resets the RUN flip-flop and
generates an interrupt to level 12 if the interrupt enable
flip-flop is set. Resetting the RUN flip-flop will set
bit 3 in the Interface Status Register, and at the same
time a light diode 1s turned off, indicating that NORD-50
has stopped.

EVS: START signal to NORD-50.
Active when bit 2 is set in the Interface Control Word
Register. Sets the RUN flip-flop and a light diode is
lit, indicating that NOXU-50 is running.

STOP: STOP signal to NORD-50 (external-stop).
Active when bit 4 is set in the Interface Control Word
Register or Master Clear in NORD-10 is pushed.

STROBE: Active when device address 60-77 in 10X instruction 1s
(STR) specified.
Start decoding NORD-10 1/0 address bits I0A0,I0Al and
10AS to

1. Tither read or write communication register in
NORD-50 (T0AO)

9. To read or write the 16 least or most significant
bits (I10AL)

ND-05.007.01

I1I-4-4

The STROBE signal may either do as indicated, or start
decoding IOAO-IOA5 to

1. Read NORD-50 Status Register (10X 30)
2. Write NORD-50 Modus Register (IOX 31)

Modules in NORD-50:

1532.11 Position C26

The control signals DEVS and STR are converted to TTL level and
supplied to the 1519 modules to START or STOP NORD-50.

The control signal STR together with the NORD-10 1/0 device
address are converted to TTL level and supplied to the 1504
module.

1532.1 Position C24

Converts the tri-state NORD-50 data bus BD to differencial
lines and vice versa.

The I0AOQ signal controls the data flow direction of the BD
bus.

1531 Position C25

This module contains the Modus Register (set by I0X 31) and the
NORD-50 Status Register (read by IOX 30).

ND-05.007.01

o

R TLL TYWHON

IVIONIYIIIC

ERSRRIE-ER

"Lyl aanbiyg

SS3WAAV O/t

3904 LS

4018 '"H1S’'SA3QA

NOILITINOD

AN
/w
{L9-09 ssetppV edined apodad)
IBOYLS
YOl
] e — e Bt
1
! |
] og |
| |
1 E _ 3
as —& = N_ as
v
’ .mmm _ J—
J i
Nndgo Eoi_ snieis “
_ (i,m”wl |
0. L
_m_u “ 1VvLSH W {(TOVOIl) "Nt
! —
/W | Le “
et | M
— |
-t) . [
| W — I as o
| % Bay } - v
i SNPOW i
|Mdd oL | mo__‘w
by | . :
__ w | {18viS) SA3G
| ANOOT { tovon i
ZEGL 920 “ LESL S20 w I'zesl $Z0
LNODT
OV ol w L 1@8L v LOGL 5 L0GL-8 L1061
g g
o3y 3LiEm b sof 14| s9] 19 ce] L) (8| g9 6LGL
poGL oo T2
'D3Y gVIY y
% as| vs | og| 48 as| vs| va| da
LV 1St J 0G-N
L'LOGL - ¥ 1051 T G10GL - 8°L0S1
vel oc) ve] 09 gel ze}l 99 29
—nf
ar | vi | vs| od gl vi] vsl od
0-Gt Mg / gL-tg g

L,

1344018

L£0L

va

Y
]

ND~-05.007.01

i

1'zest

viva

{(ZL)1dNEY3ANI

OL-N

Sssudav 30iA3a

NOILYIINNWWNOD
05-AHON/0L-HON

IvILN3®3431d

TPl 84nbl4

I11-4-6

2
us 31 gL (MO "Q)4+S93H S
k ‘5IY-WOD ILIHM/AVIY
‘034" SNLVLS o
1’\ -
2DV AHILNI € j@—— "NOY SN+ MD-vas 4OLS
06N dO.LS
sA3an
° 0S-N 1HVLS
a
R
MDeza8 oAzan
L
o~ ™
Zi TIAZT LdNEYI3ILNI &
ﬁm:v as viva A V
AdD 0L LNdNI Lo
sva
g 4 %
{(“s1)
ONILL3S i Oga1
££-0€
3Q02
0
N3l OLN 300030 g . bet— 6Y8-YVE -
L oY = " Ogo5u S— eve Haav
1Ndino la— 2VE 200930
) v 01—N
(1e151Bay SNPOIAN 0G-N BILIM) MQ <@—
8GN AOHH LNdNI 318VNT <a—{| OGNV Le
N pE P S— ££-08
(smeis 05-N pesd) Ha of Ogy;
(piOMA [OJIUOD BdBLIBIULL BILM) MD <—]]| 3G003Qa
120! ge
uoneaunuuwio) 0G-N-0L-N (peey smie1g 8doe2yialul) US <g oo
1 Lva
ovs

NN-.NS N7 N1

I1I-4-%

I11.4.2 NORD-50 MEMORY EXAMINE/DEPOSIT
Refer to figure 111.4.3.

When NORD-50 is in stop mode, the memory cells may be
examined or written into via the A-register in the
NORD-10.

The write feature is useful when executing programs

in NORD-50 private memory. This is a part of the
memory locations where NORD-10 has no direct access,
either because of system or memory address restrictions.

DEPOSIT

1. Set the DEPOSIT bit (bit 13) in NORD-50
Modus~reglister
A = 20 000; I0X MOD50

2. Load the new data into the SD (Simulate Data)
register
A = Bit 0-15 of DATA; 10X WRSD;
A = Bit 16-31 of DATA; 10X WLSD

3. Load the target address number into the SA (Start
Address) register
A = Bit 0-15 of ADR; I0X WRSA;
A = Bit 16-31 of ADR; IT0X WLSA

I~

Activate NORD-50 to execute the write operation
SAA 4, 10X WIC

""""" - EXAMINE:
1. Set the EXAMINE bit (bit 12) in NORD-50
Modus-register
A = 10 000; 10X MODSO
2. Load the address number into SA as 3. in DEPOSIT

3. Activate NORD-50 to execute the read operation
SAA 4, T0X WIC

4, Transfer data word from TD to A-register
10X RRTD 7 Bit 0-15 to Aj;
10X RLTD ¢ Bit 16-31 to A

To DEPOSIT/EXAMINE the next memory location, the SA
register must be loaded (step 3) with an address number
incremented by one.

ND-05.007.01

ITI.4.3

I11-4-3

SIMULATED MEMORY MODE

When bits 14 and 15 are set in the NORD-50 Modus-
register, the NORD-10 acts as a memory for NORD-50

by means of the communication registers and data com-
munication lines.

LTI ZIIIIIA)

) MEMORY NORD-10 MEMORY

I
I
'
'
/

MEMORY FOR
NORD=50

g SIMULATED
[
[
l
[
I

NORD-
ORD=50 NORD-10/NORD=50

COMMUNICATION LINES

The NORD-50 memory can be disconnected and NORD-10
will supply the instructions and operand data and re-
ceive data on store instructions.

In SIMULATE MEMORY mode, the communication registers
are used as follows:
TA: Used to transmit memory addresses to NORD-10

§D: Used to transmit data to NORD-50 (from simulated
memory)

TD: Used to transmit data from NORD=-50

ND-05.007.01

I11-4-9

FLOW-CHART SHOWING A MEMORY REFERENCE READ INSTRUCTION
EXECUTED IN SIMULATE MEMORY MODE:

Refer to figure I17.4.3.

1.] A-register NORD-10 = 140 000 % Set INSTRUCTION FROM and
10X MOD50 DATA TO/FROM NORD~-10 bit
é in N~-50 MODUS register.

2. | Set A-register = 16
most significant NORD-50
instruction bits

TO0X WLSD % Left part of NORD-50
. Set A-register = 16 instruction — SD
least significant NORD-50
instruction bits

10X WRSD Z Right part of NORD~50
instruction —+ SD

4

3. | START NORD-50:SAA 4, 10X WIC % SD — Next instruction
: register NI

4, | Transfer NORD-50 STOP- % STOP —= SD
instruction to SD as 2.

5. { START NORD-50 7% INSTRUCTION —= IR, STOP —= NI
6. | Set A-register = 16 wmost
significant NORD-50-DATA
10X WLSD 7% OPERAND DATA —= SD

Set A-register = 16 least
significant NORD-50-DATA
I0X WRSD

7. 1 START NORD-50 % Execute instruction in IR
with data in SD.

When execution finished, the
STOP instruction will be
executed bringing the control
back to NORD-1Q

ND-05.007.01

If instruction being executed does not write result to memory, but
to register N, a "STORE" instruction must be executed to write
result to SIMULATED MEMORY (the SUM bus is written into the TD-

register).

I11-4-10

Execute "STORE register N"

Y

Read 16 most significant TD
bits to NORD-10 A-register

10X RLTD

Read 16 least significant TD
bits to NORD-10 A-register

I0X RRTD

Y

Compare result read (TD)
with expected result in
NORD~10

ND-05.007.01

I111-4-11

1f the instruction being executed was a sequence or branch-
instruction, the data is of no interest.

In these cases, the output of the address arithmetic con-
taining the branch address is latched in the TA-register,

This makes it possible to test all JUMP, CONDITIONAL JUMP
or SKIP instructions.

:

Read 16 most significant TA
bits to NORD-10 A-register

10X RLTA

Read 16 least significant
TA bits to NORD-10 A-
register

10X RRTA

Compare address read (TA)
with expected address in
NORD-10

ND-05.007.01

Mnemonic Octal value

10X
WRBP
WLBP
WRBQ
WLBQ
WRSA
WLSA
WRSD
WLSD
MOD50

ITI-4-12

N-10 - N-50 MNEMONIC DEFINITION

164

000

61 A —>
63 A —3
65 A ——2
67 A ——>
71 A —2
73 A —>
75 A —=
77 A —>
31 A ——>

NORD-50 MODUS-REG.

Bit

OO~ WO

Mean

Stop
Stop
Stop

Stop
Stop
Stop
Stop
Inve
Mast

Read

Data

ing
on overflow

on underflow
on parity error

if BP

if BP
if BP

if BP
rt limits on 4-7
er Clear

N ININ

Memory Cell (EXAMINE)
Write Memory Cell

to/from NORD-10

Function

BP (0,

15)

BP(16,31)

BO (0,

15)

BQ(16,31)

SA(O,

15)

sa(l6,31)

SD (0.,

15)

SpD(16,31)

MODUS(0,15)

Any Reference = BQ
Program Counter = BQ
Data Reference = BQ
Data Store Address = BQ

(X = BP or X = BQ)

Instructions from NORD-10

NORD-50,/NORD-10

RRPC
RLPC
RRSA
RLSA
RRTA
RLTA
RRTD
RLTD
RSTN50

60
62
64
66
70
72
74
76
30

COMMANDS TO

WIC50

PC{0,15) —= A
PC(l6,31) —= A
SA(OIlS). —> A
SA(16,31) —=>A
TA(0,15) —=2A
TA(16,31) —= A
TD(1l6,31) —=>A
STN5(0,15)—= A

NORD-50 STATUS REGISTER
Status Register

Bit
0

O NN BN

(DEPOSIT)

No.

Meaning

Program STOP
Address Violatwe.n
Instruction hang-up
Overflow

Undexrflow

Memory
Memory
Parity
Memozxry

NORD-50 (WRITE INTERFACE CONTROL)

33

INTERFACE STATUS

RISS50

32

AO=1:
A2=1:
Abd=1:

A:

ND-05.007.01

Request
WRITE/READ
error
hang-up

Enable interrupt

Start NORD-50
Stop NORD-50

Interrupt is enabled
NORD—~50 is stopped

| ADDRESS 1503

i ARITHMETIC
|
|
| P —
i S
| X+B X5
{
o N
B MAC MA— ADDRESS
: MEMORY
) ——————MD w— DATA
N10 - N50 BUS
B —&—g
£PC
SA
o 8D
i A
D
SUM BUS 1503
CPU ARITH—-=
RESULT
BUS Exr.—--—mﬁ MoC
ARITH. SOM MB
SELECTOR
MAC
<> 18P
MAC
3
ndired NT
,,,,,,, | =)
—<>{ BQ MDC \E _ ilé R
MAC
S
Ex imm.
D
@W
IRy Argumen:t Data Bus
MB Memory ' Data Bus
i
\
\ READABLE REGISTERS
N
. N-50 COMMUNICATION
“Cl WRITEABLE REGISTERS REGISTERS
Fipure 111.4.3 ND- 05.007.01

. 6.8.77 PK/ ¢

ITI-5-1

I111.5 NORD-50 REGISTERS

The registers in NORD-50 are built with type SN7489 64 bit
READ/WRITE MEMORY integrated circuits.

Each IC consists of 16 registers or memory cells of 4 bits
each.

It takes approximately 200 ns from selecting the register until
the contents of the selected register is latched in the operand
latch.

After enabling the register address for approcimately 200 ns,
the enabling can be taken away, and a new register selected.

To reduce access time for 2-operand instructions, the register
block is duplicated, with identical content.

This identical copy of the register block is called the REGISTER
BLOCK B.

When writing information back to the register block, the same
information is written both into the Register Block A and
Register Block B.

The 16 index and base registers are duplicated two times more,
still with identical contents. One set is used for reading X
and one for B during address calculations.

During WRITE, the address for the X and the B register is the
same as for the register blocks A and B, therefore during
WRITE, identical data is written into register blocks A and B,
index register RX and base register RB.

For address calculation, the address of the RX and the RB register

is taken from the X and B field of the memory reference in-
struction.

There are 32 floating point registers with a 32 or 64 bit word
length.

For 64 bit (normal) precision where word length is 64 bits, one
floating register consists of a pair of general registers.

Floating registers are denoted FR in 32 bit precision, and FDR
in 64 bit precision.

ND-05.007.01

I11I-5-2

The NORD-50 arithmetic unit handles both 32 and 64 bits as complete
parallel operations in hardware.

NB! Register 0 always contains ZERO. This implies that FRO = O,
BRO = 0, XRO = O.

In hardware, this is implemented by disabling the operand
selector (giving zero output) each time register zero is read.

ND-05.007.01

NORD-50 REGISTERS

I111-5-3

SUM BUS WRITTEN INTO B, X, GRA AND GRB (IR 12-17)
| ;
‘ L, XRO
, BRO||
63-32 FDRO INDEX
FRO FDR1 BASE | REGISTER
RO SINGLE DOUBLE REGISTER|| X
PRECISION PRECISION B .
GLNERAL (32 BITS) (64 BITS) XR15
“"'gigli{ER FLOATING | || FLOAT.REG BR15 |
— - %
° REGISTER FDR15 TO ADDRESS
FR15" ARITHMETIC
GR15 *
/] REGISTER
/ OPERAND A
TO CPU ALU
MRO OR EXT.ARITH.
| 31-0 FDRO
- FDR1VY MODIFICAT}L
GR16 REGISTER
- - M
I T *
MR15
—— T *
FDR15
A l
GR31 %* -
i REGISTER
SUM FROM CPU ALU OR EXT.ARITH. ggEiggDAiu
‘ 1 OR EXT.ARITH.
[| IF INTER-
FDR16 REGISTER
= FRL6 FDR17 OPERATIONS
""" GR32 B
L BIT 63-32
N . *
B < | B FDR31
- FR31
GR4 7 % . —
/] OPERAND B
(INTER-
REGISTER)
s FDR16
) o FDR17
| GR48 -
- | BIT 31-0 ¥=PHYSICALLY
I - THE SAME
M REGISTERS
““ FDR31
Fieure 111.5.1 GR63 *®
Figure ITI1.5 ; OPERAND A

fe— 32 BITS—»

ND-05.007.01

P

III.6

I11-6-1

NORD-50 FIXED POINT ARITHMETIC

The main component in the NORD-50 arithmetic is the ARITHMETIC/
LOGIC UNIT SN74181.

This integrated circuit works with two operands, the A and
B-operand, 4 bits on each IC. 8 ea. 74181 IC's is then needed
to handle operands of 32 bits or 1 NORD-50 word. The ALU is
located on the REGISTER board 1502, one on each board. (There
is a second arithmetic unit for floating point additioms).

The state of the mode control input (FS4 pin 8) (refer to

figure I1T1.6.1) determines whether to do an ARITHMETIC operation
(ADD, SUB) on the A and B-operand, or to do a LOGICAL operation
on the operands.

The four function select inputs FSO-3 select one of 16 different
functions to perform.

The instruction repertoire of the NORD-50 is built according to
these operations, and the Function Code bits (FC) in the in-
struction are selected to give a straight forward decoding to
generate the Function Select bits FS0-3.

When executing instructions that cannot be done in the ALU,

for instance SHIFT, BIT OPERATIONS, FLOATING ADD/SUBTRACT,
MULTIPLY and DIVIDE, this is decoded from the Function Code
field in the instruction, and a EXT (Externmal) signal is gene-
rated and the operands are sent to the EXTERNAL ARITHMETIC

which executes the instructions and presents the result back to
CPU. The ALU is disabled during this operation, presenting only
zero on the output data lines.

The carry input is only in use during an ARITHMETIC operation
and the carry input to the first ALU may be forced to a "1" and
propagated through the ALU's.

To speed up the carry propagation, the carry is fed to a carry-
look ahead circuit 74182 and the carry generated is then fed to
the next ALU.

The output of the ALU:

1. The OUTPUT DATA or SUM (SS)

2. A ZERO signal indicating that all the output data is equal
to zero
3. Carry to the next ALU

ND-05.007.01

I11-6-2

For both operand input to the ALU, there is a selector and a
latch.

The latch latches the operands before the arithmetic/logic
function is done.

As operand A, one of the following units is selected:

1. Data from the Register Block A
2. The Overflow Register

3. The Remainder Register

and as operand B, one of the following lines is selected:

1. Data from the Register Block B
2. Data from memory
3. Operand from the instruction itself (argument data)

ND-05.007.01

N50

I11-6-3

ALU

CARRY INPUT CYS0—

MODE CONTROL FS4

ASO g N
o 5
BSO, — 1 TLALU SS0,
23
ASTy 10
.
BS1 —22 SS‘IO
OPERANDS 0
OUTPUT DATA
INPUT 21
ASZO 11
20 ss2
BS2,
19
AS3 13
18 & $83,
BS3
0
~ v,
6
FSO
FUNCTION FS1 l
SELECT 14
FS2 ——A & ZERO
3
Fs3 ALU 74181 1502.1
IR0
i 1501.5-1501.6
7 5y i
.)
|
s }cpsa —
= cesa E
CARRBY OUTPUT i cysa
1) ——
icesa —
! L »CYS81t03 ALU
L
I
{ ces12 T P
| CARRY l— CYS 12 to 4. ALU
L cpsis —py LOOK
} ¢ AHEAD
| —3
; CGs16 74182
i
!
—~CARRY INPLT
i
M 1502.2
7 $ 3
Pt
AS4 s
e -
gsa 2. ALU ssd,

CARRY LOOK AHEAD C!

& SSSO

RCUITS ON THE 1502 CARD USAGE:

;
iCARD CARRY LOOK AHEAD FOR:
E1501.1, 1501.2 Address arithmetic X, B + D adder
%1501.3, 1501.4 Addraess arithmatic X+ B adder
11601.7

11501.5, 1501.6 CPU ALY

Figure 111.6.1.

ND-05.007.01

ITIL.7

ITI-7-1

MEMORY REFERENCE INSTRUCTIONS

The memory reference instructions have in common that the
execution of an instruction involves calculation of a memory
address, either to read out the operand or to write the

operand or result back. The memory addressing may be direct
or indirect.

Memory reference instructions contain a single bit direct
addressing indicator I = 31, two 4 bit register addresses
(X and B), a 5 bit function code, a 6 bit register address
for the other operand, and a 12 bit displacement.

1f 1 equals 0, the effective memory operand address or cal-
culated address (CA) will be the sum of the 32 bit contents
of the X and B registers and the 12 bit displacement.

The 30 memory reference instructions are two-address in-
structions affecting one directly or indirectly addressed
memory location and one register.

The result may either be stored in the same register or the
same location.

During a jump or conditional jump instruction, the next
instruction is fetched from the calculated address.

The operand read from memory (refer to Figure III.7.1) goes
via the MB lines through the B operand selector and is latched
in the B operand latch.

The register operand is selected through the A operand
selector and latched in the A operand latch.

One exception from this is the MODIFY instructions JPM, JNM,
JZM and JFM where the MODIFY REGISTERS in register block B
are selected and latched as B operand.

The result is written either to the selected register or
calculated address via the SUM bus.

In the following, all the memory reference instructions are
lsited with information of the hardware execution of the
instruction in the CPU ALU.

In the hardware diagrams the memory reference instructions

are devided into groups given by IR bits 20,21, and 22.
(Group~numbers are listed).

ND-05.007.01

TSNOLIOMRILSNT DIDOT

dTtys 3T § @12AD 83Ul

Azoumw 07 3INS2dI 93TIM 8TDAD PATUL

T+g+Y soaTH ‘Axxes PIDIOT UITM :2T70AD puooag
yoqet € < (¥D) ‘yo3er ¥ < (¥) :970h0 3SIT4
Azowew 01 3TNSaX 93TIM :2[0AD PIATUL

aay sanooxy :9T2AdD puooss

yoreT € = (¥O) ‘udael ¥ < (¥) 9T24AD 3SATd

yoTaouny se g-y $9aT1h 1 R1xed padsIoi Ul TMm

ISNOTIOMIISNT OLLAWHIIEY

I1I-7-2

VD < Y23 V 23TiM 37240 pPATUL
¥ - U23B] g 93ITAM :9T0AD puUODSS
yoaeT € = (¥D) ‘uUo3el V.=—(¥) :9TDAD 3SIT4

T+¥D 03 9T+¥ I9ISueIl ITDAD PUOISS
¥D 01 ¥ Xejsueal o10AD ASITI

(¢D) SsSaIppe pejelnoled uT Izo3sthax 81018

9T+d O3 (T+¥D) I@Fsueal STOAD PuodSs
¥ 01 (¥D) xo3jsuerl 9T0AD 3ISITA

OIY ybnoayaz 3o021Tp (dW) puexado-d
$SNOTIOMIISNT ETASNYIL ViING

dnoxb

UOT3IONIISUL Azousu woxy puexado = dW
b g.v 0 T 1T T T O gKW ¥ ¥OI d pue (YD) PU¥ ANV
Y0 g+Y T O I 0 O T ¢9W pe
L fe) g+v T O I 0 0 T €W g
091 JUSWSIDUT AXOWdNW NIW
0o g+Y 0] O T O 0 1T dW ha!
Y0 g+Y 0 O T 0 O T €W d
GdI Azowsuw ©1 PPY WAV
d T-9-Y T 0O 0 T T 0 €KW d P9I ¥ woxy (¥D) 3oeazqus dNS
g g+v 0 0O T 0 0 T €W g ¥oI g 01 (¥D) PpP¥Y day¥
A ¥iad 0 T T 0 T 0 dRW A
A"40)] JAIaY 0 T T T T T €K b=
SOOI (¥) pue (¥D) dbueyoxmg URX
T+YD ¥Idv 0 T 1T 1T T 1T 9T+d 4GOI I91sThay HuTlrOTd
L/ ¥Iay 0 T T T T T ¥ I0 xejasiIbeoy sIgnog 21035 dLS
\fe) ¥1dy 0 T T 1T T T ¥ $9I I93sthey 21035 ULS
91+4d ¥1ad 0 1 T 0 T 0O €W 99I(ya) xe3asthey BuTIROTA
b ¥yrag 0 T T 0 T O HH I0 I93sTboy eTqnod prvol ddl
b ¥1ag 0 1 T 0 T O €W o1 xoasThay peodl dAT
T3saq suesw 5TTTTgsi ez 1 o0 & g TEnoEyT T GoT30onI3SUT
AzxeDd °I3U0d g4 3109798 puexado
pooxo4d SPOR uoT3IoUNg

INOLIVIEAO (I¥ NOLLOMMISNT EONTIALR] AOWAN

ND~-05.007.01

sng--giW uo

111-7-3

v 9704kD

I93Ud
e s £
dWnr 31

r 9TDAD
x93U8
‘r3¥e

dWne 31

7 BTDAD
I23Us
\swnluﬂm

dI¥s 3T

SUDWUIOD

xo3sthbax pstrztoads ut
¥o'Qg USIATIM I+ (Dd) I2uno) wexboid

TIFS dWne It

Od3aZ 234D

“3Fe
dune FT
TES OSUD

OIvY
UT W
pue

d ppY

*3F° awne 3T
pa3yoaYd OMAZ BUL

T3S awne
(1es)

JT peoeyo

3T NOIS SUL

"3IS JINS IT PI¥OaYD NIV

g0 andano O¥HZ SUlL

3¥e 4138 3T

poosys NIY Jo andano

(1€8)

3Tq ubTs ayL

! SNOTIONYISNT
AONENOAS ANV FONHNCES TYNOTLIANOD

SUON
SUON
SUON
DUON
‘uab
asTnd

a3 Tam
ON

SUON

‘asada

g+Y

d+Y7

g+

g+Y

d+Y

41dav

41av

qJIdv
qIdY

o O O O

L T e B

pa2I0g

(o T B

o o o O

- Z3U0D

Lo T S B

e o o o

paTqeud x

0 0 Tyl+Dd oxoz 09I ¥ «T7+Dd dump uinisy [Id

0O 0O T 9T+4 q 0 # (4) 3T aunr pue ¥
03 123sSTboy AFTPOW PPY WAL

€91

0 O T 91+d q 0 = (¥) IT JWNC pue ¥
03 133sThbo¥ AJITPOW PPY WZL

0 0 T ot+d 0> (4) IT AWnr pue
03 x93sTbay AJTPOW PPY = WNC

0 0 T 91+4 St 0=z (d) IT dunr pue A
01 x83s5THaY AITPOW PPY WAL
T T T A 0 # (¥) 3T dunp 2¥0
T T T ¥ 0 = (4) 31 dunp zZul
T 1T 1 g ¢oI 0> (¥) FT dump Nup
T T 1 g 0z (4) T dunp Jir
T T 0 €W o (¥€2) # (¥) 3T di¥s QD
T 1 0 49w S (¥2) = (d) 3FT diys =D

01 v
T T 0 €W g (¥0) > (¥) 3T drys TaD
T 1 0 €W d (¥D) < (4) 3T d13s Oud
;;;;;;;;;;;;;;;;; 277170 T8 TN 4nows 77 Tuot3onxasur
o898 pueaxado
uoT3Inunyg

SSNOTINVIAAO (YIY SNOTIONELSNT HONMHHAT AJOWANW

ND-05.007.01

oraowWUR TIR TYNAIALXE
ut UGUSwaw COﬂQUSM&mCH
pue ndo uT payoreT puexado

I1I-7-4

UOT]ONIISUT SEB YD BU3 23INIIXF
UOTIONIQISUT SB YO FO JUSJUOD S3N0OVXY

and3ano
andano
andiano
andlano

andano
andano

and3no
and3no
and3jno
and3no

andano
andano

Oo¥d?
OdEHZ
02:1V4
) CVA

(02:0C V4
odus

02: 12V
oddz
o944z
OddZ

O¥ddZ
odd7Z

O O

S O OO

paosxod

e —

=

~

* Z3UO0D
BPOW

T 1T 0 0 * aTqnop 9pTATP DBUTIROTA AAdd
T 1T 0 O opT1AaTp DuTiROTA AGd
T 1T 0 O arqnop AtdiaTnu buTieold OWJ
T T 0 © Ardratnu Hutieold NWA
T 1T 0 0 (91 sTgnop oevijqns DburleOTd ddS4
T 1T 0 O joeazgns Buriwold dSd
1T I 0 © uoTsToaxd oTqnop ppe purtieoTd AAVA
1T T 0 O v ppe HButaeold (V4
T T 0 O apTATIp I8HBJUTL ATQ
T T 0 O 991 ATdraTnu x9baiul AdK
T T 0 O T =1
T 1 0 O 0 =¥
091 o3NOaXF Qjouay OXHd
llllllllllllllllllllllll 4oT350I38UT

g4 209188
uoT3ouUng

0TV NdD @HIL ONISN I O N NOTIDNMIISNT AONAIEATT AdCWAN

ND-05.007.01

Atowews
A.-

AlowsiN widi}y puelsdQ g

gL 4+vY

Joisibey peay

I1I-7-5

UoNOMIISUY
riy einosexy

woiy ereq AHOWIW

]
i

t

L= LE Y}l $S84PpPYV I08dipUl peel "

dINS 10 dINAT §t
yole4 uoloNNsSUl MmaN ‘g

l

(8W) pueisdQ pesy ‘2

t

{WWNS) 1insay @018 ‘i

(ssauppyv paieinoled) v

418 dIMS M LY

!

BIUN0D

weaboad

od

SNOILDNYLSNI 3ON3d3434
AHOWIW Y04 MOT14 vivd

FEERT T

‘©3H-X
) > g1-0'D3y
. DILIWHLIHY SSIHAAY A\‘ij S N
-~
N
93y 2
IL1EM
‘53
Aa,,.\mm
j Alll
(9607-0) _ <
LN3IWIOVIdSIa wagoonag ¥ dvId X avid
EINIFERETT-38) J
&
a m\\moo\mm\mo R oy] g] x 3 ©34-yI
k ~ N
\ S e -
3 It 71 O z% £¢ 5z Lz be e

Q' L°IIT @an314g
01872 \\\
NS
10319%8{8S Wng sg - . o
// "N 0079 —
N Hd31Sio3y ‘Bay
- J e - -
-~
- sHq zg
N 1012818S £€9-0°'934
//
ANVvd3d40-8
wng Sv
._, i1deles uoldung JjesiBey 91iIM
Aroulswl oY exeq ¥00{q 4815iBas 01 BIEQ .
X3 Bay pesy
1insay P wng
L e 7 z _
!!!!!!!!!!!!!!! 1 e N] o
| Z Z K
i N 7 o
[v 7 =
! _ AN . woo078 ‘oN
DILIWHLIHY ,IVNHILXI., vy -]
_ ‘ N Fualsiogy g%, i
! ! — - a4 mv
o1en L
b g e e e - 4 suaze 2 2
-0 ~1
4x3 1010828 £€9-0'034d A
pueisdO-g 7z =
puetsdQ-v ANVd3d0o-v =
2
% ‘Bey a1t

I11.7.1

I11-7-6

INDIRECT ADDRESSING

Indirect Addressing takes place when bit 31 in the In-
struction Register is equal to 1.

This means that the address now in the instruction word does
not point to the data or operand, but rather points to a
"bointer to" the data. Thus, the instruction word address
is said to be ONE LEVEL away from the data.

It is also possible for the instruction word address to be
more than one level away from the data.

1f a word of memory is a pointer to a pointer, rather than a
pointer to the data, then a bit of the memory word is set to
indicate this (bit 31).

In addition to the IR-register, there is also a register with
identical contents except during indirect addressing, the
displacement register D. This register is the input to the
address arithmetic in use during a memory reference instruction
with the bits used as follows:

Bits 31-20: Not added in the X, B and D adder

Bits 19-12: Added only during second indirect address cal-
culation

Bits 11-0: Always added in a memory reference instruction
address calculation

If bit 31 - 0 in the IR-register, only bits 11-0 in the D-
register are added in the X, B and D adder during the first
indirect address calculation.

If bit 31 in the now calculated address is a 1, a new level
of indirect addressing is inserted.

Up to 16 levels of indirect addressing is possible. More
levels will cause INSTRUCTION HANG-UP interrupt.

Bit 31 equals one in the calculated address means that the
contents of this cell is used to calculate the next indirect
address.

Bit 31 equals zero indicates the last level of indirect
addressing and the contents of this cell is the operand

address.

In both cases, the 20 lower bits are clocked into the D-
register.

ND~05.007.01

III-7-7

Bits 31-23 are clocked into the IR-register while bits
22-12 in IR are kept unchanged. This is done to avoid

destroying the function code and the register involved
in the instruction.

Indirect addressing inserts an extra indirect cycle (C1)
and each level of indirect addressing adds one "read in-
struction time" to the execution time.

ND-05.007.01

111-7-8

INDIRECT ADDRESSING

IR REGISTER:

| |
1] FF7FT77 7,
R f D (0-4096)
L L8 £ LA ///IIII/
X, B L
X, B+D cA
DISPLACEMENT REGISTER: — -
1211 Q
Not addsd in X, B+ D adder] D (0-4096)
MEMORY:
INDHRECT ADDRESS FORMAT:
23,22 2019, !
B (8] Displacement (0-1048 576)
{R REGISTE |
18,17 12,11 0
7 FIIT 77,
R Vs Not used
Vs
s L L LLL
— CA
M, e 0
rer—"r
not added D (0-1048 576)

I bit 31 was = 1: Next indirect operand address

. 1. indirect address
caiculation

2. indirect address
calculation

[-
1f bit 31 was = 0: Operand address

Not added in X, 8 + D adder in first indirect address cadculation

These bits in IR are kept unchanged

Figure 111.7.2.

ND-05.007.01

I1T.7.2

ITI-7-9

INTER-REGISTER INSTRUCTIONS

The inter-register instructions have in common that both
operands are taken from the registers, called source re-
gister A and source register B and the result is written
back into a third register, the destination register.

The 23 inter-register instructions are three-address
instructions containing three 6-bit register addresses:

two source registers holding operands A and B respectively,
and a destination register.

As indicated in figure III.7.3, the register block A is
selected and latched in the A operand latch, while register
block B is selected and latched in the B operand latch.

As A operand the Overflow Register OR and Remainder Register
RR may also be selected.

In the following, all the inter-register instructions are

listed with information on the hardware execution of the
instruction in the CPU ALU.

ND~-05.007.01

I111-7-10

Ia3s1hox

UOTRRUTISOP OJUT USIZTAN ‘o¥gz sandano NIY dUlL oI3Z 0 T T T 0 0 oIz I91STHSI UOTIRUTISIP IBS UZS
g+ ¥ 0 T 0 T T T gus usweTdwod ‘YO A93STHIY du0d
g+ ¥ 0 T 0 O T O vas ausweTdwod ‘¥O I9AISTOHIY THOH
g + ¥ 0 T 1T 0 1T T O I23sThbod HOd
g4 Y 0 T 0 T T O qus - 7dwod ‘¥O PATSNTOX® 193STHIY dOX™
gAY 0 T 0 T T 0 vds "Tduod ‘¥0O ©ATSNIOX3 I23STHay YOXY
qd A Y 0 T T 0 0 T MO 2ATSnTOX® I93STDHad OXY
g - v 0 T T T O T gus aususTdwoo ‘ANY I93STbay daNd
g4 . ¥ 0 T T 0 0 O vys ausweTdwoo ‘ANY X@3STHIY YANA
g - ¥ 0 T 1T T T O aNy Iea3stbay aNyg

SSNOIIOMILSNT DIOJ]
uoT3ouUny SeB g-¢¥ soaTb ‘AxIed podoIoT UITM 1-9-¥ /0 o o T T O qoer3qns 193SThOW €Sy

6-¢ TenURK 20UDIASISY
sog 4 ¢z¥I uo spuadsp Axxed PIVIOF SUL g+Y /0 0O 1T 0 O T ppe IoasThHed avd

:SNOLIOMIISNT DILANHITIVY

ATy ybnoayz 309ITp ¥ puerado-y ¥Ia¥ T 0 I T T T HO I0 W < ¥ INOo¥

qTv ybnoiyl 309ITP (WO IO ¥¥) puersdo-¥ JIAY T 0 1 T T T ¥ Io1sThoy =~ I93STHOI WO IO ¥¥ NIY

:SNOTIOMAISNT FHASNVAL VIYd

|||||||||||||||||||| LII|I|II|1|1||l!tlmwmmﬁmmwlllmmmmﬁillmmwwlllimmm ¢ ¢ T O UOTIONIISUT
AxxeD *I3U0D s 2309T8S
paoxodg SPOW uoT3ouUng

INOLIREAJO NTY SNOTIOMMISNI HALSTOHE~JHINT

ND-05.007.01

IT1-7-11

t BT2AD
1923ua
aaT109IJ°
dixs 31

~

aa1309332 dIys I1
pe¥oayd |7y Jo 3Indano o¥IZ BUl

aaT3093738 dIMS JT padodayd Qv
7o Indino (1€S) I1d NOIS @4l

aaT1100338 diys 31
payoayu2 1V Jo andino oyyz Ayl

aanT30%2339 dI1¥s JT podoayd v
3o andino (1€S) 119 NOTS @yl

$SNOTIOMILSNT IONINOES TYNOLLIANOD

SIUDWOY

d+v
q4+v

q+V
q+V

SUBOW

o

o

0SAD
K1xen

paoi10yg

@]

(&)

©13U0D
PpPOK

T 17 0
T 1T 0O
I 1T 0
I 1T 0
0 0 1
0 0 1
0 0 1
0 0 1
¢ 1 0
S 3291es8
uoTIOUN]

0#
Ou
0>
0
0# 23Insaa
0= 1[nsai
0> 31nsal
0¢ a1nsaux

ER
JT

It
ES:

jinseax 31 diys
123518921 30BII(QNS
3insax 31 dIvs
‘sisistdax 1oBIIQNSG

Jinsax1 31 d13s
‘s19381831 10BIIQNG
Jinsax 31 drys
fs193s51891 30BAIQNSG

diys ‘sa23s133a1 ppy
drys ‘sav3s1891 PPV

d1ys “sa81s1821 ppy
d1ys ¢sia3sTB8o1 ppv

4ais

DS

Ad71S

DS

18V
PN

INOTLVEAO (YIV SNOLIOMILSNT dAISTIONT HAINT

ND-05.007.01

I11-7-12

[1 L 0 0 9urieo[= 19893UL ao1d ‘otid

1 1 1 0 0 19893u]
pPapUNOyY - 8urirold @14 “Y1d
1 1 1 0 0 19893ul =-3urivold ax1d ‘Xidg
[1T 1 0 0 1es1o 3114 104
[1 1 0 0 Juswo [dwod I1g WOd
1 1 1T 0 0 19s 319 1849
1 T 1 0 O 3171Ys I¥yDINOT IHOIY QT¥S “I¥S
1 1T 1 0 O 131ys T¥DIO01 14T aTIs “TIS
1 1 1 0 O 171Ys DITAWHLIINV IHOIY av¥s ‘ViS
1 1 1 0 0 131Yys DITAWHIINV 14371 avis ‘ViIs

(4 pue v ¥00Td 193s199Y)
13398189y uotleurisag 03 OB 1 1 1 0 O 3171Ys IHOIY
U9313TIA 3[NSDI pUB PIInNoIaxse uo13onNals +89y orqnoQ‘islisisey qY¥s ‘NYS
~UT °OT3BWYITIB [BUIIIXY 01 ¥ 300149 1V ndo 3o
193s189y 243 wolJ 3INO peod pueiadQ andino o197 1 1T 1 0 O 131Ys 1LJ3T
8oy @1qnog ‘I93sI8™Y QYIS ‘YIS
$SNOTIDMILSNT NOTININAINYI WIvd
n;‘lsl;nl‘(lnxll;n‘«x;uluzlu'qnuxummmwmamm;ulflll1x;mmmmm|;‘aulmwmuzl;|;uunmulm:1w1;m |||||||||||||||||||||||||| dotgonaasuy
*13u0) SJg 312971°S
9POR uotioung

:0TY NdD @HIL ONISN I O N SNOIIONMISNT HALSTOH HHINT

ITI-7-13

vy 91040 193Ud (4D pue 14D ©3
juss Teu8IS JINS {@AT13093I32 JINS JI
*OTIBWYITAE TBUILIXD UT paxdayd 11g

t 21240 as93u?d Q1d) pue [dd o3
quss TeuUBTS JINS f9aT3093Fe JINS II

*019z SurleO]] 3Isurele payOdUD

0# ‘0= 11nsay °311q uB81s 3surede
peyoaud Q> ‘04 3Inssey ‘OTILWYITIE
{eUI®3X® UT 2UOP 10BIIqns/ppe JullrOold

! SNOLLOMEISNT HONANCAS TYNOLLIANOD

1935189Y-U0TIBUTISA(Q [1dD UT
MoBQ USIITAM J[NSaY OTIBUYITIE
TRPUIDIXD® UT PRINDdXS SUOTIONIISU]

PSNOTIDMALSNT DT IAWHLINY

1
1
1
T
1
1
1
1
1
1
1
T
[
1
1
1V 1dd 30
andano o127 1
SUBIR %S
©13U09)
DPOR

1T 1 0 0
I 1 0 0O
1 1.0 0
1 1T 00
I 1 0 0
1 1T 0 0
I 1 0 0
I 1T 0 0
I 1T 0 O
1 T 0 0
1 1 0 0
[1T 0 0
I 1 0 0
I 1 0 0
L1 0 0
T 1.0 0
T o0
Sd4 109188

UOTI0oUn]

SOV NGD ML ONISH

ANO uo dids 31g 0s4
0¥dz uo diys 131g zsd

0# 3rnsax 71 drys @inv ‘4NSV
0= 3Tnsazx IT diys Qddav ‘44SY
0» 3rnsex 3t dI¥s ggIv ‘4TISV
oz jinsax 31 d1vs

‘ppe 193s189Y (Qyd ¥4 @ASY ‘JISV

0# 31nsax 31 diys ans ‘ans
0= y1nsax 31 d13s ads ‘dads
0> 31nsax 31 d1vs ars “471S
0¢ jinsax

It Qﬂxm ‘3ova3qns

1275189y Q¥4 ‘¥4 @0S ‘498

SPIATD aaa ‘¥4 aigy ‘Jad
Ardrapnu aQdd ‘¥4 ai ‘an
JoBI3gNns add ‘¥4 gisy ‘dsy

ppe (¥4 193s1%8021
uotsioaad arqnop‘ppe
(1) 193sT8e1 Burivold 4vy dAVd

APTATP 1215189y AT
L1drainu 19318188y Wy

I O N SNOLLOMALSNI HHAISIOHT HeLINT

ND-05.007.01

2es €rlcr1l @0 T

o

nav <
ad ~
! ~..

I11-7-14

o43az
10199{85 WNS -
A 8 %0018
. yaren 3181934
~ 2
- 10108195 s1q Z€lt
wns v IR R AN
aNvy3do-g
wWnS a1lipn
L |
/ HO "O3d
Lns3d s MOT4H3IN0
\\\AllJ
T e e el e e e - & e \\“
r q_.. i T .
" { "y O3y sAq NS 8Yl BIA dlswiylLIe
] | | _~ HI3ANIVIANIYE Teulelxs,, wold
! I f
i “ D1LIWHLIYY LIVNHILX3., 1 yole-} vdSs
!
_rh\rllln..llll.lllliloa.|l||.“\.uy 10109185
L . X
X3 aNvHI40-8
ANV H34O-V
ANVH3I4OV
WNS
e uonun
/ siq zg 0S4
90"
W £9-0 'D3Y %3
N N »
JepooeQ
g yoolg JeisiBay v 3ooig 4e1sibey
‘Boy 804n0g peay Bey edinog pesd wIng sllip apodiuoizouny
A, — I
N
SNOILONYLSNI "a o 0dH oto3ay-yl
H31S1934-43LNI
SeENONERAR J¢ P - — 7 er TR

ND~-05.007.01

111.7.3

I11-7-15

ARGUMENT INSTRUCTIONS

The Argument Instructions have in common that one of the
operands (operand B) is taken from the instruction itself
(Bits 0-15) and the other operand is taken from the Re-

gister Block A, specified by bits 23-28 in the Instruction
Register.

The result or SUM is written back to the same register
given by bits 23-28 in the IR-register in both the Register

Block A and Register Block B (X and B if register address
0-15).

The 16 most significant bits in the B-operand are always
set to zero.

In the following, all the argument instructions are listed

with information on the hardware execution of the instruction
in the CPU ALU.

ND-05.007.01

111-7-16

7 ATDAO 339 JIMS JT poYodYD DZA f< 0 0 I 0 0 I Say-# 89y JT JINS 4SS
I93u9 o andino 0¥d7Z 24l 0 0 T 0 0 I Bay-= 82y JT JIMS 7sd
J3o 4138 31 139 JINMS 3T PO8YDd {1V IO m+< 0 0 T 0 0 1 ay-s 89y 3T JIMS Nsd
andano (1¢S) 314 NOIS Ul q+v 0 0 T 0 0 1 ay-< 39y 3T 4IMS dsd
H 924D *JI2 JIUS FU pedoRuv Q1V [I- 1 0 0 1 1T O Bav# 89Y IT JIMS 40d
I97ud jo andano OYAZ 24Ul \ I- m 1 0 0O 1T 1T O 3ay= 3oy 3T 4IMS 7dd
dIds 31 ©J3° JIMS 3T Pe@doRyd QIV 3o [1-9- < 1 0 0 1 1T O gay > 89y JT JIMS Nad
andiano (1¢S) 314 NOIS dUl \ 1-4-V 1 0 0 1 1 0 8av« 89y JT 4INS d4dd

:SNOTIOMEISNT JONANDIS TUNOILIANOD

-89y pe10979s 031 (9YV¥-) d- :43aed padioy YIIM

(po1oaTas (*89Y) (O¥WHZ 01 I3s ST puexado-y a4l T1-4-V 1 0 0 1 1 0O 1935189y

03 8ay jo juswaidwo) 1385 VOIS
(poioa1as (-82Y) 0YdZ 03 13§ ST pueiado~y 9yl q+v 0 0 1T 0 0 1 19315189y 03 “3AV 185 VIS

!SNOTIOMITISNT NOLIVINAINVI VIV
dAv 0 1 1T 0 0 1 1935182y pue 3ay YO 2ATSNOXY VIOX
d+v 0 1 1T 0 1 1 1938189y pue 31y YO VO
q4-v 0 1 1 1 1 0 1°31s189y pue 81y NV VANV

$SNOTIOMIISNT DIDCT

8oy woxj po3ioeiiqng jusunlday :4Li11ed PadI0F YITM [-d-V 1 0 O 1T 1 O 1935139y 03

quownday jo juswaidwo) PPY VOAV
d+v 0 0 T 0 0 1 123s189Y 03 JudwWNIIAY PPV VAAV

SNOTIIOMILSNT DILANILLIYY
e e S eS T TSUESR KiTEy hSd ez 1 o0 T UoT3onNIISUT

peo1og *13u0) SJd 3109212S
IPOW uoT3oung

INOIIVHAJO NIV NOIILONAISNT INAWDEY

10198[6S Wing

L8ivL
nav

v-0Sd

040Z 01 185 S!
Le-91 uig

L

yoe

T0198(8S

P*/°TII1 210814

(51-0)

1ig 1uswinbiy

A%%%%%%V

\\\\m\\\\\\v

m\m\w@

yooig Je1sibs

\\\\&

ﬁ <

I11-7-17

SNOILONYLISNI INFANOHY MOTd V1Vd

aNVvd3dO-8 (4Q) 181siBayd ILIM
(0 = pueiado-y 185) (4 Q) soisiBey peey
voudzZ
% ulng
N
N
N
AN
N
e e s1q
yore] £9-0 4e1s1B
7.
10108188 N
% vOodZ
GNVYH3d0O Vv (4Q) Jersibay 81LM %.omm
— #30003Q
A
~
AR ////////////%é
ANINNDYEY 24V o} Ha / 24V
Y
§1 91 i1 8l zz ¢¢ 8c 6¢ Ot 1t

rO34d-dl

ND-05.007.01

111.8

II1-8-1

INSTRUCTION EXECUTE SEQUENCE

In parallel with executing the instruction in the Instruction
Register IR, the next instruction in hte program (PC+1) is
requested and written into the NEXT INSTRUCTION register NI.

By implementing this instruction pre-fetch feature, the
waiting time for memory reply is utilized to execute the
instruction in the instruction register. When the instruction
execution is finished, the next instruction register is trans—
ferred to the IR-register. This is the way inter-register and
argument instructions are executed.

When executing a memory reference instruction, the CPU will
be busy calculating the memory operand address (CA) for the
instruction in IR, while the next instruction is fetched and
clocked into the NI register. When this memory sequence is
finished, the memory read or write reference in calculated
address can take place.

SPECIAL CASES

The normal execute sequence is to transfer the NI-register to
the IR-register and start execution. But the instruction in
the NI-register may not be the one to be executed next. This
is the situation in the cases mentioned below:

1. At START-UP time

2. Executing a sequence instruction
Transferring program execution from the current location
to some other location in memory

3. Executing a remote execute (EXC) instruction

1. When NORD-50 stops, the NI-register will be equal to the
instruction following the last executed instruction.

At START-UP time, a new instruction must be fetched,
pointed to by the Start Address (SA). This instruction
is clocked into the NI-register and further to the IR-
register.

A special cycle (DC4) takes care of reading the contents
of the program counter = SA to the NI-register and next
cycle DCO will transfer NI to IR and the execution can
start.

ND-05.007.01

ITI-8-2

During a jump, conditional jump or skip, where the
jump or skip condition is fulfilled, the NI-instruc~—
tion is not the one to be executed next.

IR = JUMP or CONDITIONAL JUMP

The program counter is parallel loaded with the cal-
culated address from the address arithmetic. The same
DC4 cycle is entered and the PC-address is fetched and
clocked into the NI-register.

IR = SKIP

The program counter is incremented by one pointing two
instructions ahead of the instruction in IR. The same
DC4 is entered fetching the new instruction.

The input to the IR-register consists of a 3-line
to 1-line selector. The first line is the NI-re-
gister and the two remaining lines are in use while
executing a remote execute instruction.

IR = Remote Execute (EXR)

If the register field equals zero, this means:
execute contents of calculated address as instruction.

The instruction in the calculated address is fetched
and placed directly in the IR-register via the memory
data line MDC.

If the register field equals one, this means:

execute the calculated address as instruction. The
calculated address is fed directly to the IR-register
via the memory address line MAC.

ND-05.007.01

111-8-3

N - 50 MEMORY SEQUENCE

MEMORY DATA

DE - _
.l CODING
OF

INSTR-
UCTION

MD

CALCULATED
OPERAND
PLACEMENT ADR.
NIS IRS B
— SELECT

ADDRESS
ARITH-
X=REG.®WMETIC

BoREG —b ADDRESS

CALCULATED
ADR —= PC
IF JUMP

EFFECTIVE

B 11 (NEXT INSTRUCTION FETCH

OR SKIP EFFECTIVE)
LOAD

Figure II1.8.1

ND-05.007.01

I11-8-4

suop usym KA1dsx pusag

cIp®

pelBINOIRD wWOiF/0] BIEBP
puexado peoI 10 93ITIM

Apeoay ®iE(g
uaymn KAjdsx puag

Aiowauw
UT WOTIID2NIISUT 1AX3AN

1+0d
JO 3juajuod Ino peo9Y

¢ 8 IIT oImaT]

4TI =—1IN u=2yl

AYOWAW

paysiuTy uayMm -9
peaa pueriado
KLiowow yiTm
uorjnoaxe 11eIg G
_ HIT¥M 3T
: _ PeYsTutj
d Xavay ! juoTanvexg g
! Yl =— 1IN |
| ua Yyl :
_ paystuly |
! uoT3InNdexXy G
t
|
| H 0d =— 1+02d
z AdViaY }o I9381892a-IN 2yl ozurl
vivd " HWOHuusuummH 1xX9u 201D ¥
| |
] |
“ “ r 3
_ | (a pue g°X)
~ | *891-91 3o
i uoty, 3U93U0D JO
| -dNi3jsul 23nO "Ip®E pueaado
“ -9xX® 11I®Ig *¢;93BINDI®D "¢
| ON ! SHA
|
ﬂa aveay VI <— T+0d “ ;13sul 9ousiaaged AIowa|
aﬁn okt cI3sut umwmemwuww .m_ UWOIIVNIISUI 2pooda(g -7
(1+04d)VH | _ ; PoeP
*891-IN JO 3IUL3U0D YITM (SYI) I23sI88i1-¥YI ¥20T1D ° 1

Ndd) 04 - N

JONANDIS AYCLAN 05 - N

ND-05.007.01

ITII.9

I11-9-1

NORD~50 MAIN STATES

The NORD-50 main states are determined by three
flip-flops located on the CYCLE COUNTER card 15063

DCCO, DCC1l and DCC2, also called the cycle counter
flip-flops.

The state of the flip-flops is decoded on the 1519
card and gives the implemented cycles listed below:

DCCO DCC1l DCC2 CYCLE
0 0 0 DCO
1 0 0 DC1
0 1 0 bC2
1 1 0 DC3
0 0 1 DC4
1 1 1 DC7?

The basic machine cycles in NORD-50 are:

DCO: First cycle of instruction execution.
Memory reference instruction:
Execution/operand fetch cycle.

Inter-register or argument instructions:
execute cycle

DCl: Indirect address cycle

DC2: Instruction execute if memory reference
instruction

DC3: Instruction execute for instructions with
two data references in memory

DC4: Instruction readout to next instruction
reglster (NI) in start sequence, in skip
instruction effective or jump instruction
effective.

DC7: Stop Cycle

Data may be transferred to/from NORD-50 com-
munication registers via the NORD-10 1/0
system.

Each time the clock pulse DCCS arrive the output of the
NEXT CYCLE DECISION LOGIC will be clocked into the DCCO-2
flip-flops. This implies that ¢locking the same

information once more will extend the cycle for one clock
period.

ND~-05.007.01

During multi-level indirect, for instance, the lines
containing 001 (the input to DCC2 = 0, input to DCC1
= 0 and input to DCCO = 1), may be clocked up to 15
times.

The cycle will be terminated and a new cycle entered
(or the same cycle extended) at WP time, equal to
the time new information in written into the CPU
register block either from CPU ALU or from external
arithmetic.

Cycle DC7, the STOP cycle may be entered in two ways:

A) Presenting a ground level on the MASTER CLEAR
(MCL) line to the clear input of the DCCO-2
flip-flops.

The MCP signal generated on the 1519 card is a
programmed MASTER CLEAR pulse which occurs when
bit 9 in the modus register is set, Used to put
NORD-50 into a well-defined state.

B) Forcing the NC7 signal (Next Cycle DC7) to a
ground level, the NAND gates output will be all
ones and at the next arriving DCCS pulse, DC7
will be entered.

The ND7 signal will force the cycle flip-flops to
DC7 at the first arriving DCCS clock pulse in the
following cases:

1. Protect Violation
The requested address was protected by the BP
and BQ address limits.

Hardware:
ABPBQ signal generated on the 1504 card. Status
bit 1 set to a one.

2. External stop from NORD-10

Executing an IOX NORS0O instruction and A = 10
in NORD-10, the NORD~50 will enter cycle DC7.

3. STOP instruction executed in NORD-50

4. Parity error of modus bit 2 is set; detected on
the 1504 card.

ND-05.007.01

I11-9-3

5. Overflow detected in external arithmetic Sensed
and modus bit 0 set (OFL = SB3) at RYX
time on
6. Underflow detected in extermnal arithmetic 1504

and modus bit 1 set (UFL = SB4)

7. Instruction hang-up
More than 15 levels of indirect addressing or

execute of EXC instruction (counted on the
1510 card).

Input to the NEXT CYCLE DECISION LOGIC is information
about current cycle DCO-DC7 and IR function code bits
informing what cycle to go through executing the instruction.

An active JEFF signal (jump or skip effective) will
force the NEXT CYCLE DECISION LOGIC to present 100

on the input lines to the DCCO-2 flip-flops, entering
cycle DC4 for instruction readout to NI.

The JUMP OR SKIP CONDITION FULFILLED logic has this
input in addition to the IR function code bits:

ZERO (CPU ALU output equal to zero)
$31 (CPU ALU sign-bit output)
FRSBIT) . .

SELBIT } Trom external arithmetic (C-rack)
These signals are checked against the IR bits 1if the
jump or skip conditions are fulfilled.

ND-05.007.01

I11-9-4

6161

.\

sEfdeskclu

I"67111

JTIauy3Tae
Teuasixe wol]J
SUOTITPUOD JIMS

)
TOW R
29[—)
e LI41HS
£0d
S00d DT0AD I
Hooio IXau LI
O ;
9061 LON +
prdomernsily
{, -
<
7004
TATLIOALAT ¢
dINS MO dWar S
. ; QATII4TING
e e Te NOTLTANOD
m d1MS ¥O dWar
S -
1; M < IONTNDAHD =
= 91907
tood 01907 e /0q
NO1S103a ; I
ATORD .m
i]
IXAN | 70d
L < 0
- 700
L < 104
_ << (0Q
000d

SHIVO (aNVN

154014 dI1d
SAILVIS NIV

SIT9 H40D NOILONAA ¥I

DID0T JLVYLS NIVW 05~0dON

2 A
1€S 7
ay
v dD
WOY.d
0¥d7
i
<
P~
<o
<O
)
[en
§
font
=z

111-9-5

STOP CYCLE
gtart from N-10

NEW INSTR. FETCH —#NI
IF START SEQUENCE,
SKIP OR JUMP INSTR. EFF

111
111

Execute Interreg. and
() Argument Instr.

O INDIRECT ADR. CYCLE
(IND.ADR) —+1IR and D

INSTR. EXECUTE IF MEMORY
REF INSTR.

Next conter\

of DDC at

DCCS —time \
(1506 card) N

e INSTR. EXECUTE IF 2 MEMORY
' REF. INSTR.

e CONTINUE TO NEXT CYCLE

R JUMP LEFF

A INDIRECT JUMP EFF To fetch new—instruction
””””” SKIP EFF

©-6-6 RESULT OF MIN = O

_____ NEXT INST Way back to execute

NEXT INSTRUCTION
— STOP

REGISTER SKIP EFF

Figure 111.9.2 MATH STATE DIAGRA!

ND-05.007.01

ITI.9.1

CYCLES INVOLVED EXECUTING A MEMORY REFERENCE INSTRUCTION

II1-9-6

Underlined: Instruction fetch
Normal type: Instruction execution
DC7: STOP CYCLE

DC4:

DCO:

N10Q0/N50 communication i1s active to load start
address to SA, break addresses to BP and BQ
and break conditions to modus register M.

Activate N50 by SAA4; I0X NORSO0.

SA to program counter PC via the memory address

bus MAC. Request instruction pointed to by PC.

A simulated Data Ready signal (DRS) is generated
to change cycle to DC4.

INSTRUCTION TO NEXT INSTRUCTION REGISTER (NI)

CYCLE

As Address Ready (AR) from memory appear:
PC + 1 —> PC. Request instruction now polnted
to by PC (next instruction).

At Data Ready (DR) time: Data now ready equals
instruction requested in DC7. Clock instruction
to NI register (NIS1).

Change cycle to DCO.

EXECUTE AND MEMORY OPERAND READ/WRITE CYCLE

NI —Instruction Register IR (IRS)

Calculate operand address CA.

Memory write instruction:x Memory read instruction
x or Indirect address-

x ing:
Execute instruction in X
IR. Enable result to X
memory data bus (MDC). X

At AR time:
PC + 1 —>» PC (PC is now 2 ahead of executing
instruction) .

Request calculated address CA.

ND-05.007.01

LLi-y—/

At DR time:
Clock next instruction requested in DC4 —> NI.

Enter cycle DC2 x Indirect ? enter DC1
x otherwise DC2.
X

DCl: INDIRECT ADDRESS CYCLE
—3 At DR time:

Clock data = indirect address into IR and dis-
placement register D.

IR31 = 1 X
X
YES (Multilevel indirect)x NO
x

Request calculated address.
Extend DCl— Enter cycle DC2.

DC2 % if two data
references in memory.
DC2 if one data
reference in memory.

®KoM oW XN

DC2: INSTRUCTION EXECUTE CYCLE
(ONE DATA REFERENCE)

At DR time:
Request instruction now pointed to by PC.

Memory Write Instruction x Memory Read Instruction:
Instruction finished Latch operand on

data bus into B operand
latch.

Execute instruction in
CPU ALU or external
arithmetic.

Mo MoK R OK XK

At delayed DR time:

Write result into
destination register
if result from CPU -
ALU, enter DCO.

Enter cycle DCO

-

»

1f SKIP or JUMP effective
enter DC4 to fetch new
%x instruction to NIL.

»

ND-05.007.01

DC3:

II1-9-8

Instruction executed

in external arithmetic:
At External Data Ready
(RYX) time:

Write result to destin-
ation register, enter
cycle DCO.

MoX XM XX XK

INSTRUCTION EXECUTE CYCLE
(TWO DATA REFERENCES)

At DR time:

Request CA address if: MIN, XMR or ADM.
Request CA + 1 address if floating double (FD)
instruction.
Memory Write: Memory Read:

latch operand read in
B latch if MIN, XMR or
ADM.

First operand written if
FD

Latch first operand
(Bit 63-32) if FD
instruction.

P T T

At delayed DR time:
x Write first operand to
x FD register if LDD.
Enter cycle DC3.

INSTRUCTION EXECUTION SECOND CYCLE

At DR time:
Request instruction now pointed to by PC.

Memory Write: Memory Read:

MIN, XMR and ADM,
operand written

Second FD operand
written.

X
X
x
X
X
x Latch second operand
x (Bit 31-0) if FD
X instruction.
At delayed DR time:

x Write second operand
to FD register if LDD

»

ND-05.007.01

I11-9-9

Enter cycle DCO.

If MIN skip effective enter cycle DC4 to fetch
new instruction to NI.

Enter DCO at external
ready time 1if
instruction executed
in external arithmetic

-

AT .. AS NANT 01

I11.9.2

II1-9-10

CYCLES INVOLVED EXECUTION AN INTER-REGISTER OR
ARGUMENT INSTRUCTION

Underlined: Instruction Fetch

Normal types: Instruction execution

DC7:

DC4:

STOP CYCLE

NORD-10/NORD-50 communication is active to load start
address to SA, break addresses to BP and BQ and break
conditions to MODUS register M. Active NORD-50 by
SAA 43 10X NOR5SO.

SA to Program Counter PC via the memory address bus

MAC. Request instructlon pointed to by PC.

A simulated Data Ready Signal (DRS) is generated to
change cycle to DC4.

INSTRUCTION TO NEXT INSTRUCTION ON REGISTER (NI) CYCLE

As Address Ready (AR) from memory appear:
PC + 1 —= PC. Request instruction now pointed to by
PC (next instruction).

At Data Ready (DR) time:
Data now ready equal instruction requested in DC7.
Clock instruction to NI register (NIS1).

Change cycle to DCO.

NN N7 N1

DCO:

I111-9-11

INSTRUCTION EXECUTE CYCLE

NI —> Instruction Register IR Dby the NIS signal.

Instruction in IR executed and result written back
to destination register DR.

At AR time:

PC + 1 —>PC (PC is now 2 ahead of executing
Thetruction). Request instruction now pointed
to by PC. ‘

At DR time:

Clock next instruction requested in DC4 —> NI
Extend DCO.f]

1f instruction executed in external arithmetic
the DCO is extended until external ready (RYX)
arrives.

At RYX time:

Write result to destimation register.
Extend DCO.“”}

Tf SKIP condition tested in CPU and skip
condition found satisfied, enter DC4, other-
wise extend DCO.

1f SKIP instruction tested in external arithmetic

and SKIP condition found satisfied, enter DC4 at
external ready time (RYX).

ND-05.007.01

IT1I-10-1

111-10 TIMING SEQUENCE

Fach basic cycle in NORD-50 where instructions are
executed has two phases, the read and the write phase.
Decoded on the 1519 card and named DCRO - DCR3 (Read

phase cycle DCO - 3) and DCWO - DCW3 (Write phase cycle
DCO - 3).

During the READ phase of cycle DCO the operands

are read from the register in the register block

given in the source address field and clocked into the
operand latches,

During the READ phase of cycle DC2 the operand 1is
read from memory and clocked into the operand latches.

When the operands have been latched, the phase can

be changed to write. During an interrcgister or
argument instruction execution in cycle DCO, the re-
gister address is changed to destination address for
both register blocks (At SP time on 1519). At the
register WRITE pulse the output of the ALU is written
into both register blocks.

For a memory reference instruction the write phase
of DC2 will be used to write the result to the re-
gister if the regilster was the destination or back
to memory if memory was the destination.

READ PHASE WRITE PHASE
,,,,,, % N S
CYCLE: | i
CPU ALU
i B

EXECUTION

WRITE PULSE
e

ND~-05.007.01

ITI-11-1

ITI.1.1 MEMORY PROTECT SYSTEM
The heart of the memory protect system in NORD-50 1is
the address limit registers BP and BQ.

BP = Break Point Register No. 1 (20 bits)
Lower address limit, and

1

BQ Break Point Register No. 2 (20 bits)

Upper address limit

N-50
MEMORY : Address O

/// //<;// BP Lower limit

BQ Upper limit

Max. Address

The BP and BQ register can be used to protect either
the memory area bounded by the addresses within the
two registers, or the memory area outside these bounds
against any of the following:

* All accesses

e Instruction fetches

eData read and write

sData write only

The break conditions are given in the following bits
in the modus register:

ND-05.007.01

I1IT-11-2

MODUS o~
BIT NO.: 4 Stop if BPslAny Reference < BQ
5
6
7
8

Stop if BP = Program Counter < BQ

Stop if BP < Data Reference < BQ

Stop if BPS Data Store Reference < BQ
Invert limit on bit 4-7:

Stop if 0 < x <BP

or

BQ = x <Max. address

The address lines MAC to memory have two sources
(the third 1is used for start-up) selected through
on the 1501 card.

1 Program Counter ZSelected when instruc-
tion fetch

2 The Address Arithmetic %Selected when reading
or writing memory
operand address

The memory address lines MAC are continously compared
against the BP and BQ registers on the 1501 card.
The result of this comparison 1s the signals

LBP 20 = Referred address less than BP and
LBQ 20 = Referred address less than BQ

These signals are fed to the 1504 card.

On the 1504 card these signals are checked against
the stop-conditions given in modus bits 4-7.

If modus bit 8 is set, the LBP 20 and LBQ 20 signal
is inverted before checking.

The result of this comparison (the signal ABPBQ)
is then used to decide whether a request can be sent
to memOry Or not.

If the address points to the protected area, the
request will be blocked. NORD-50 will be stopped,
entering cycle DC7 by the NC7 signal, and as a re-

sponse to that a completion signal 1s sent to the
NORD-10.

ND=-0K5.007 .01

II11-11-3

Status bit 1 will be set, and the TA register will
hold the address that caused the stop.

To compare the memory address against BP and BQ takes
time, approximate 90 nsec.

The request will be delayed for 100 ns to be sure
that the address is legal. This is done by the IPROT
signal on the 1519 card, which will extend the cycle
where the request is initiated for 100 ns.

Modus bit 4

M4 = 1 = A

(All references) : All memory references will be
checked.
All cycles will be delayed.

M5 = 1

(Instruction fetch) : All cycles where the program
counter is selected to the
MAC bus 1s delayed.

M6 = 1

(Data read and write): All memory reference instruc-
tions execute cycles where the
address arithmetic is selected
to the MAC bus is delayed.

M7 =1

(Data write) : As for M6 but only memory
reference instructions exe-
cute cycles where memory is
destination is delayed.

ND-05.007.01

I1T1.11.1

I11-11-4

PROTECT ADDRESS SETTING

Because of the NORD-50 instruction prefetching, the following
is to be considered:

Assume that the break condition for INSTRUCTION FETCH is set
in the MODUS register. The lower break address register BP
is set, and in the location before the BP-address an in-
struction is to be executed.

Because of the prefetch, the execution of this instruction will
generate an address violation interrupt.

tLrrreet

BP-address RTJ

limit NO INSTRUCTION
FETCH
PERMITTED

The rule is thus:
The last location before an address limit must not contain an
instruction to be executed.

This is the case if the protect-mode is

1. All references
2. Instruction fetch

ND-05.007.01

I11.12

111-12-1

CPU AND MEMORY OPERANDS TO EXTERNAL ARITHMETIC

The operands to the external arithmetic are selected through
two selectors in CPU, each selecting 32 bits (2 x 4 bits on
each 1502 card).

The operands are latched in the operand latches and driven
by a tri-state driver to the external arithmetic.

The operands may either be 32 bits (for instance Floating Add

Single Precision) where only one operand selector/latch/driver
is enabled, or 64 bits where both the operand selector/latch/

driver operates with 64 bits in parallel.

Memory Reference Instructions

A memory reference instruction using the external arithmetic
(FAD, FSB, FMU ...) will read one operand (the B-operand)

from the calculated address on the MB~lines from memory and
select it through the darkened part of the B-operand selector.

Refer to figure ITII.12.1.

The A-operand selector will have its input from the register
block A, and only a 2-input selector is used.

A floating double precision operand is stored in memory in
two consecutive locations.

During a double precision floating memory reference instruc-
tion, the 32 most significant bits are read from the cal-
culated address and latched in the operand latch (bits
32-63) by the STRB2 pulse.

An extra cycle is entered to read the least significant
operand bits (bits 0-31) from the CA+1 location, select them

through the operand selector and latch them in the operand
latch by the STRBL pulse.

The 64 operand bits can then be presented in parallel.

ND-05.007.01

Inter-Register Operation

The A-operand is, as for memory reference instructions, taken
from the Register Block A.

The B-operand is taken from the Register Block B.

The B, lines out of registers 16-31 and 48-63 will always
carry the bits from 0-31, while the By lines out of registers
0-15 and 32-47 will contain either bits 32-63 in the operand
for double register or floating double register operations or
bits 0~-31 if none of these operations.

The registers 16-31 and 48-63 are not in use for single
precision floating.

During double register (shift double) or double floating

register instructions 64 bits are selected through the operand
selector in parallel.

ND-05.007.01

111-12-3

CPU AND MEMORY-OPERANDS TO EXTERNAL-ARITHMETIC
(B-operand shown)

VOUBLE
REGISTE
OR
FLOATIN
REGISTE

REGISTER BLOCK B

REGISTER BLOCK B

REGISTER REGISTER
0-15 32-47
BT 0-31 B BIT 0-31
}u//uu/r////u//u:1///1//1/1/////// //////////////////nu:uu//lu/uiy/i ﬁM
BIT 32-63 ﬂ 81T 3263
VNS IT NS RNV ITTTRINNIINRNININNIRIV) M Al Illl/llllllllllllllllllllll&‘l.‘l. J
REGISTER BLOCK B REGISTER BLOCK B W
REGISTER REGISTER
NOT IN USE
.31 K
16-3 48-63 FOR:
SINGLE PREC.
BIT 0-31 BIT 0-31 FLOATING
R RN AR AR R ” /////I////II////////III/l/ll/llll/l 1 ’8
81703 R 817031 L
WIRVIINI NI NI RIINIRIRRANEITNINN YTV IR IV RN IV IV NINNRANRRINE
I
MEMORY OPERAND 32 gITS
MBO-31 MBO-31

1

v

'////
DPERAND SFLEcTo/ //
3
1

v

7
PERAND SELECTO%A
|

OPERAND LATCH

TRISTATE DRIVER

. A

A-RACK (BP)

C-RACK (aU)

32 62

TO “EXTERNAL"” ARITHMETIC

TO CPU ALU 8031
STREI i
HPERAND LATCH
TRISTATE DRIVER
A-RACK (BP)
C-RACK (AU)
BIT: © 31
Figure 111.12.1

ND-05.007.01

STRB2

CPU (B-RACK)} CARD:
1502.1 - 1602.8

e - e o o —— - e MmO G G e e e

1503.1 - 15603.8

111-12-4

OPERAND SELECT AND EXTERNAL ARITHMETIC TIMING:

Memory Reference Instructions:

IRS ._.;;—1 Instruction —# [R Register
|
A-Operand
!
STRA1 = !1 ﬂ A-Operand Latched
STRA2 | Both 32 and 64 bits
M
! 250ns
B-Operand
i
re— 1.2 s T Bit 32-63 latched
1
STRB2 ;
i be— 0,8 us i+ 0.
STRB1 : "é l Bit 0-31 latched
: T, o
th.
815 Operands RYX (Ext. Arith. finished)
| EWP (Write Dest. reg. in CPU)
I — text — 50
ns
I H—————H

[r““" Start Ext. RDY
I Arith. if 64

} Bits operands p
!

D text e
l

Inter-Register Instructions:

ﬂ Both 32 and 64 bits

i

ESOn%

|

STRB1
STRB2

|
I
|
STRAT
STRA2 ﬂ
! A and B operands latched
i
}
|

L & Start Ext. Arithmetic

RYX
! WP

Text will depend on type of instruction.

ND~05.007.01

I11.13

III-13-1

RESULT FROM EXTERNAL ARITHMETIC BACK TO CPU

All results achieved in the external arithmetic are written
back into the Register Block A and B in parallel. The
register number is specified in the destination field in the
instruction.

When the ready signal (RYX) from the external arithmetic
arrives, the result is ready on the data lines and the ready

pulse triggers the register write pulse (WR) in CPU on the
1519 card.

Wwhen the external arithmetic returns a double precision, 64
bit word as a result, all the 64 bits are written back
simultaneously. Bits 32-63 via the most significant SUM
bus SM and bits 0-31 via the least significant SUM bus SL.

When executing integer multiply (MPY) or integer divide (DIV)
in external arithemtic, the result on the most significant
SUM bus will be the overflow (more than 32 bits result) for
multiply and remainder for divide.

When the RYX signal arrives, the CPU is pre—-determined to
write the most significant SUM bus into the OVERFLOW register
if FMU and into the REMAINDER register if DIV. This is done
in parallel with writing the least significant SUM bus (the
result) into the destination register.

ND-05.007.01

Gldd SLLLL ubsL

7 [Md 24922 $anoly

IIT-14-1

7489
AOIIVIVO NdI 0S-N

.

4 -

gn m
X LYi BN
| " 7.
“ ' 1IN
' 7 n v
. : _.m_ |
& 1 ' .
it x 3 ! \ “0&.&
] 1
an
g . i o ! LR S\ B "
oI E 3 20W od 1< * g : “ tc:“
1 _\éu iy 7 "
PU. ' y Puby y PEZ]
I H i WS AT %
ﬂ ST ' s vl sa| |g hs
] e g
N N 4ns3, T
... ll‘ } . 8474 74
dg1>—— F d X -
e - EY
TR “m“) mmLJ o R S \
] ! ! S td lm\ \(Q : -
v ; N — 8w
1 Vi ' | -
) —Okl
G — ! 1
ez | "
. J -
—7 ; T3 s
= : A |
. sk
“ %7 g 4 ! ="
' “ {
! P Jrun }
|| “ (7104 “ EB\SE“
i ‘ _ 1D 7
G m X el =
X e -
+ |
= Ll
<s—p—08 m gy ” dv z v E Ty
SNE OSN ~ OIN 5 " | 535
VIV — Qi e d ' " o |
]
AHOWIN — o “ “ 7
SS3a0Y — Vi oV unﬂo e “ g , N Eu%..:é
2 1n I 14 w5 Jo
il mmk E _ 91
H }
!)
] i
Lost | £0SL : 2054

ND-05.007.01

SECTION IV

EXTERNAL ARITHMETIC C-RACK

ND-05.007.01

IvV-1

DETAILED CONTENTS
R kT S A N S

Section

Iv.1 C-RACK GENERAL

Iv.2 SHIFT MATRIX

IvV.3 SHIFT INSTRUCTIONS

IV.4 BIT INSTRUCTIONS

V.5 CONVERT TO FLOATING

IV.6 CONVERT TO INTEGER

iv.7 FLOATING ADD/SUB

Iv.8 FLOATING REGISTER SKIP INSTRUCTIONS
IvV.9S C-RACK OVERVIEW

ND-05.007.01

Page

Iv-1-1
Iv-2-1
Iv=-3-1
IV~-4-1
Iv-5-1
IV-6-1
Iv-7-1
IV-8-1

IV-9-1

Iv.

Iv-1-1

THE C—-RACK

In the C-rack,

the following instructions are executed:

as part of the external arithmetic,

Memory Inter. No.of
Ref. Register operand
Mnemonic: Instr. Instr. Means: bits:
FAD X Floating Add F+(Ea) 32
FADD X Floating DP Add FD+
(Ea, Ea+l) 64
RAF X Floating Reg. Add 32
RAFD X Floating DP Reg.Add 64
FSB X Floating Subtract
F - Ea 32
FSBD X Floating DP Subtract
FD - (Ea, Ea + 1) 64
FIX X Convert floating to
Integer 32732
FIXD X Convert DP floating
to Integer 64/32
FIR X Convert floating to
Rounded Integer 32/32
FIRD X Convert DP floating
to Rounded Integer 64/32
FLO X Convert Integer to
Floating 32/32
FLOD X Convert Integer to
DP Floating 32/64
X Shift a 32 or 64 bit
operand up to 63
places to the right
or left with arith- 32
metic, logical or or
rotational shift 64
BST X Bit set 32
BCL X Bit clear 32
BCM X Bit complement 32
BSZ X Bit skip on zero 32
BSO X Bit skip on one 32

ND-05.007.01

Iv-1-2

As the table indicates, four of the instructions are
memory reference instructions (one operand from memory
and one from a register) and the rest are inter-
register instructions (both operands, if two, are
taken from the register block).

A-operand B-operand
DATA FLOW ¢
The C~rack consists of OPERAND SELECT
this main card set: 4 x 1513

7% 15171
SHIFT RIGHT MATRIX

2 x 1512
OPERAND SELECT 4 x 1513 v
FLOATING ARITHMETIC
Four 1513 cards select 4 x 1514
the operand to the inter-
nal bus. L
V' 2 x 1511
SHIFT RIGHT MATRIX SHIFT LEFT MATRIX
2 x 1512
Two 1511 cards shift the L
operand 0, 8, 16, 24, 32, 2 x 1517

40, 48 or 56 places. The |[LINE DRIVER
shift can be rotational
or arithmetic.

Two 1512 cards shift the @i}
operand O, 1, 2, 3, 4, 5,

6 or 7 places. RESULT TO CPU

P

FLOATING ARITHMETIC 4 x 1514

The floating mantissas are added or subtracted on
these cards. (Exponent arithmetic on card 1515.)

Shift operands go directly through. For bit instruc-
tions, the specified bit should now be in bit O and
is manipulated and checked on ecard 1516.

SHIFT LEFT MATRIX

As right shift matrix but shifted left.

LINE DRIVER

Drives result on tri-state lines to CPU.

ND-05.007.01

Iv-1-3

TIME USED:

A1l instructions executed in the C-rack take the same
amount of time. The time from the operands are pre-
sented until the result is on the result bus to the
CPU is approximately 400 ns,

The operands passing through the C-rack are never latched,
so the time used is given by adding the integrated
circuit delays together.

The OR of all start signals to the C-rack triggers

a one shot on the FLOATING CONTROL 1516 card. This one -
shot is set to approximately 400 ns equal the time the
operands need passing through the logic and the re-
sult is ready on the data lines to CPU.

l

AU63-32

SHIFT (32 BITS)
BIT OPERATIONS

CONVERT TO
FLOATING (FLO)
32 BITS

CONVERT TO
FLOATING (FLOD)]
64 BITS

CONVERT TO
INTEGER (FIX)
32 BITS

AU63-32

C_ - RACK DATA FLOY

FROM B-RACK CPU

|

AU31-

|

0
8

Iv-1-4

l

BU63-32

|

BU3

SHIFT DOUBLE (64 BITS)

CONVERT TO INTEGER

DOUBLE (FIXD) 64 BITS

¢

REG.

OPERAND FROM
MEMORY OR
BEBROCK B.

1-0

FLOATING ADD AUEé FLOATING ADD BU31-0
FLOATING SUB FLOATING SUB
FLOATING ADD DOUBLE FLOATING ADD DOUBLE
FLOATING SUBR DOUBLE FLOATING SUB DOUBLE
C - RACK
U63-32 U31-0

RESULT 32 BITS

;

RESULT 64 BITS

Iv-1-5

CONTROL SIGNAL TO THE C-RACK:

In addition to the operand data given in FigurelIV.1l.l,the
following control signals are decoded in the CPU and
sent to the C-rack.

Gen. on

cards: Means:
SFAD 1508 Start Floating Add
SFSB 1508 Start Floating Subtract operands

/ latched
SOPR 1508 Start Bit-, Shift- or and ready
Convert instructions in CPU

DPA 1505 Double precision

floating poilnt

The following IR signals are buffered in the CPU (1505)
and sent to the C-rack.

IRX 0 - 5
IRX 23 - 30

SIGNALS BACK TO THE CPU

Gen.: Means
SELBIT 1516 $Specified bit used by the CPU in
Bit-Skip imstructions
FRSBIT 1516 Floating reglster compare bhit used

by CPU to determine SKIP condition

OF2 1516 Floating or Integer (FIX) Overflow
UF2 1516 F].oating Underflow (Result equals 0)
RYP 1516 Result ready on data lines to CPU.

ND-05.007.01

Iv-2-1

Iv.2 SHIFT MATRIX

In the NORD-50 all shift operations are performed on
two cards: 1511 and 1512. The same cards are used
both for right and left shifts.

The 1511 card shifts the operand 0, 8, 16, 24, 32,
40, 48 or 56 places, while the 1512 card shifts the
operand 0, 1, 2, 3, 4, 5, 6 or 7 places.

The output of the 1511 card is connected to the input

lines on the 1512 card. This makes it possible to

shift the operand any combination of shifts from 0-63.
""" For shifting a 64 bit operand, 2 of each of these
cards are needed.

The cards are built up of 8-1 line sectors (74151),
where the 3 select lines, drawn on the top of the IC,
determine which operand bit to be selected to the

output, i.e., the number of places to shift the whole
operand.

In this way, the time involved in shifting is indepen-
dent of the number of shifts. Shifting an operand 1
place takes the same time as shifting an operand 63
places. The time used is equal to the IC delay.

On the 1511 card, the IR bits 3-5 give the number of
places to shift the operand, while on the 1512 card,
IR bits 0-2 give the number to shift the operand.

On both cards, the output from the selectors can be
disabled (not shown on the drawing), getting only
zero from the shift matrix.

ND-05.007.01

[V=2-2

[*Z AT 24and1j]

ol [sl 1 v €l Tz Tou T o H 6 1 s } §
T T v T ¢l T an 1 0oL 1 6 -8 1 . T
T qr T M”—. T N—. T —‘_‘ T OP T m 3 m - N T @ T @
. - -+ -+ - e - h b w - ot
con-6Nt | Eent] CheM | tont | Y%ny | 5 ynt] & ent | = oent i LN 1 Sont | ¢
zL L oL 6 8 L 9 g v .
1 1 | o | s | s | [o [@ - b 1 € 1
1 o ; 6 L 8 . £ 1 ° T ° 1 ! - ¢ + pms_ T OW
- Al T8I LN I 9N — SW A - EW — oW I I
_ zyl
- Lyl
- oHi
i.a.e,-..:-....--l.,::!-..!--..!i-i--.i;:.-.iii-.;i.i--!i;!.!.-i-.i!ww NI_
LLGL
1 19 1 o8 1 €9 1 29 119 1 09 1 65 | 8g SV 1572 -
boous 1 og S boows 1 gg 1 zg 4 s L 05 1 ev {4 sv
+ 6 1+ s + v 1+ o 4 op 1+ o + €p - zv 1 v + ov
coment 1 and 1 Ofuwy T esgul T S&wk T Cownt | % ewq T 9¢ znt e T €ond T
T ¢¢ T z¢e T 1g T o¢ T 62 T 82 T 1z T4 T gz T ve
T az T e T ez T =z T 12 T oz [61 B T 0 1 9
T T 9 T g1 T v T <1 Tz T 1t 0l T 6 T 8
T 84N + gan + /80 1 9dan 158N Tvan fean Fzan Tian 1 o8n
- T I T T T T T I
< GH |
- H1
. gyl
R ONOIS Oydn3
............. Hll. 104
LGi¥L £an
S —
zan
—--- 8 —] »
Lan
(LHDIY) X1 LVIN L4IHS T 19 -
. om | o8N
el

Iv.

3

Iv-3-1

SHIFT INSTRUCTIONS

Shift register instruction format in IR register:

31 30 29 28 27 26 25 24 23 22 18 17 12 11 6 5

0 DR/DFD SRA

00 Rotate Register

01 Rotate Register

10 Arithmetic when right shift

11 Logical shift (zero end input)

R=1 Shift right

L;l Shift left

:o 0 ¢ SC ¢ 31
=1 0 (SC ¢ 63 Shift double

precision register

= IR signals sent to C-rack.

During right shift (R=1) the IR bits 5-0 are enabled
to the SHIFT RIGHT MATRIX (1511, 1512) to give the
shift count.

During left shift (L=1) the IR bits 5-0 are enabled
to the SHIFT LEFT MATRIX to give the shift count.

As indicated on the C-rack data flow, the shift operands
go as the A operand and during 32 bits shift the operand
is presented on the most significant AU lines.

On the SELECTOR cards 1513, the 32 least significant

bits are set to zero. So during any shift 64 bits are
always shifted.

During arithmetic shift (SM=2) right AU 63, the sign
bit is extended during the shifting. (sign extension
SIGNO)

In left shift, zeros are fed into vacated bit positions.

In logical shift, the bits which are shifted out of the
word are lost and zeros are put in the other end.

ND-05.007.01

IV-4-1

IV.4 BIT INSTRUCTIONS
Bit instructions format in IR register:

BIT SET (BST), BIT COMPLEMENT (BCM)

-31H3QM?%" 18 17 12 11 6 5 0
0 DR
C = 0 BST
C = 1 BCM

BIT CLEAR (BCL)

BIT SKIP ON ZERO (BSZ), BIT SKIP ON ONE (BSO)

0 29 28 27 26 25 24 23 22

N
1l

0 BSZ
1 BSO

il

IR signal to C~rack

AN
I

During Bit operations, both the SHIFT RIGHT and the
SHIFT LEFT matrix are enabled.

The IR bit 5-0 is used to shift the specified bit num-
ber to bit position 0 in the shift right matrix (rota-
tional shift).

When the bit i1s in position O, the bit is either SET,
COMPLEMENTED or CLEARED. This is done on the 1516 card.

In the shift left matrix, the Whole oOopefdhd Wi¥dE 18 shifted
back leaving the specified bit in its orighimal position.

BIT SKIP instructions are executed in the same way, but
this time, the specified bit is selected and gated
back to the CPU (1516) where it is checked against the
skip condition (1506). If the SKIP condition is satis-
fied, the CPU skips the next instruction.

ND~08 007 01

Iv.

Iv-5-1

CONVERTING INTEGER TO FLOATING (FLO)

CONVERTING INTEGER TO DOUBLE PRECISION FLOATING (FLOD)

INSTRUCTIONS

Hardware Execution: On Card:

Select the operand AU63-32 to the internal
bus UB63-32. Set UB31-0 equal to zero. 1513

Shift UB63-32, 32 places right.
Sign extension (ARITHMETIC shift) if AU63
was equal to one (negative integer). 1511, 1512

Invert (2's complement) 1f AU63 was equal

to one, otherwise not. The priority encoder

looks for the most significant one bit. 1514.1,1514.2
This information, equal to the number of

left shifts counted from the most signif-

icant mantissa position (SLZ0-5), is fed

to

the 1515 card and subtracted from a
""normalized'' exponent. (An exponent bias
400. and the maximum number of shifts

(55?0 = 678) added.) The exponent looks

like this:

100 110 111 1515
-/
bias 67

The output of this subtraction is a ready
biased exponent (UD54-62).

The number of left shifts (SLO-5) is fed to
the SHIFT LEFT matrix where the integer 1is

shifted to be a normalized mantissa. The
exponent part is masked away. 1511, 1512
The mantissa bit 54 is removed. 1512.4

The exponent UD62-54 is fed from the 1515
card, and the shifted mantissa is fed from the
shift left matrix

to
the DATA BUFFER card, driving the result (U)
to the CPU. 1517

The sign bit U63, equal to AU63, is driven
from the 1516 card to the CPU. 1516

Nd-05.007.01

IVv.

IV-6-1

CONVERT FLOATING, DOUBLE PRECISION FLOATING TO
INTEGER (FIX, FIXD)

CONVERT FLOATING, DOUBLE PRECISION FLOATING TO
ROUNDED INTEGER (FIR, FIRD)

Hardware Execution: On cards:

The exponent part of the floating operand
AU62-54 is fed directly to the 1515 card. 1513
The mantissa part 1s selected to the

internal bus (BU) to the SHIFT RIGHT matrix.

The exponent part is subtracted from a
"normalized" exponent, giving the shift

count to the mantissa to form an integer
(RSHO-4). The magnitude of the exponent 1515
is checked. Integer overflow (PIOFL) 1is
generated if exponent 7 3210.

Integer overflow (SIOFL) is detected in

case of FIR, FIRD when the result before
rounding 1s the greatest possible integer

and the rounding adds a one. ' 1516

The mantissa is shifted in the SHIFT
RIGHT matrix according to the value of
the exponent (RSHO-4). 1511,1512

In case of PIOFL, the SHIFT RIGHT matrix
is disabled (NENBL) giving the greatest
possible integer as output. 1512

The integer 1is inverted (2's complemented)
i1f AU63 was equal to one. 1514

Direct through the SHIFT LEFT matrix, no
shift. 1511,1512

Integer driven to CPU. 1517

Iv.

Lv=y

FLOATING ADD. SUBTRACT

The process of adding/subtracting two normalized floating point
numbers can be devided into four steps:

1. Selecting the greatest exponent as the main or result
exponent.

2. Shifting the mantissa of the operand with the smallest
exponent.

3. Add/subtract the main and the shifted mantissa.
4. Normalize the result mantissa.

The A-operand exponent AU62-55 is subtracted from the B-operand
exponent BU62-55 (Refere to figure IV.7.1).

The carry signal of this subtraction is used to select the greatest
exponent as the result exponent via the UA BUS, and select the
mantissa of the smallest exponent as input to the shift-right
matrix via the UB-BUS.

The output of the exponent-subtrator gives the shift count to

shift the mantissa on the UB-BUS right.

If BU>AU the subtractor output will be negative and the absence
of the carry is then used to invert the output to generate a
positive shift-count.

The three most significant bits in the exponent are compared to

see if one of the exponents is much greater (>>) than the other.
If that is the case, the greatest operand is taken as the answer
and the output of the shift-right matrix is disabled. (Zero is

added to the final result).

ND~05.007.01

IV-7~ 2

AUS4 , . - L RSHO
BUS4 __ ,1SUB-
' |TRACTER
l AU-BU IN- AMOUNT RIGHT TO
EXPONENT VER~ TO SHIFT RIGHT
\ TER SHIFT SELEC- SHIFT
60::: MANTISSA |[TOR MATRIX
61 o
e]
AUG2] — - = RSHS
BU62 .| CARRY
. ™ o
ALU T

COMPLEMENT 1IF
SUB NEG.NUMBER OUT
OF SUBTRACTER

— CARRYO“‘*’ATA}>SELECTS A OR B-

N carry OPERAND TO UA BUS

= ATRJ AND VISE VERSA

COMPARATOR]
AU60-62

BU60-62 .

ANY OF
THESE BITS
DIFFERENT?

YES

DISABLE SHIFT RIGHT-MATRIX (NENBL)

THEN Ea> > Eb
or
Ea <<Eb

EXPONENT MAGNITUDE COMPARATION CIRCUITS
(on 1515 caArD)

Figure 1IV.7.1

ND-05.007.01

IvVv-7- 3

AU63-0 DOUBLE BU63-0 DOUBLE
e ey
AUG3 R . ______MBZ o 0 BUG3 o L ________3_2 . 0
77, T 1 s I 1
EXP. | MANTISSA | | EXP. | MANTISSA |
62 54 5
AN R R BN | I R
SIGN 1 _g
A-OPERAND B-OPERAND
{ v % I ¥ A
&) ! 1513 oflara |2 | 1513 0| ATB
| SELECTOR | SELECTOR
l l DISABLED fB
UA62-54 UA (ENBLBM) é
RSHO \
T ™ SHIFT-RIGHT
\
RSHS ol o1y 1515 \MATRIX

DISABLED (NENBL)

AUG3 }SIGN BIT
i i) PLUS BU63
EXPONENT MANTI§S§4ADD/SUB FAD FLOATING ADD
> FSB FLOATING SUB

é :

Figure IV.7.2

The output of the subtracter/inverter gives the number
of shifts the mantissa of the smallest operand must be
shifted to the right (RSHO-RSHS5) to make the exponents
equal.

The operand with the highest exponent is selected as
the main exponent via the UA BUS.

ND-05.007.01

IV-7- 4

MANTISSA ADD/SUB

Whether the two mantissas, the main and the shifted
one, are to be subtracted or added depends on

the sign of the two operands and the operation.
(Floating ADD or Floating SUB).

The mantissa add/sub is performed with an ALU
(74181) on the 1514 card.

The shifted mantissa N is added/subtracted to/
from the main mantissa UA according to this table:

SFAD SFSB
AU63 BU63 FLOATING ADD FLOATING SUB
0 0 PLUS MINUS
0 1 MINUS PLUS
1 0 MINUS PLUS
1 1 PLUS MINUS

ND-05.007.01

IvV-7- 5

MANTLISSA OVERFLOW

Mantissa overflow can occur in the cases involving

a PLUS as given by the previous table. (MINUS re-
sulting in overflow is a special case explained
later). The mantissas of the two operands are added
together. The carries are propagated from the low
order end to the high order end.

After addition:

54 32 31 0

AT T T T T T T T

110 ! DOUBLE I MANTISSA
e |

The resultant mantissa >1): the mantissa is not
normalized. 1 < MANTISSA < } = normalized mantissa.

NB! The most significant bit of the mantissa,
UA54, (the bit is always 1 when normalized),
is only used internally in the floating arith-
metic. In memory or in the register block, bit
54 is the least significant bit in the exponent.
Bit 54, the most significant in the mantissa
is inserted on the 1513.4 card.

The least significant bit in the exponent is
internally called (EUAS54).

The most significant bit in the mantissa is
masked away before presenting the result to

CPU by simply disconnecting this bit. (The
output bit 54 of the mantissa shift left matrix
is not connected to the driver circuits).

In the case of mantissa overflow, the mantissa is
shifted one location to the right (63 locations to
the left with rotational shift) and the exponent
is incremented by one, and we are finished.

ND~-05.007.01

6

v-7 -

T+V0O=an
L161 a1v S
GTI6T ¢€-/*ATI 2an814
T+V0O™
i —— oy e e - ————
¢9a e ¢oan (1-)-vn 79vn
ndo ol -AT¥A
prest—;
van s povng
INANOIXH
I D S ————————EE b
STIST | GIGT
- AUOM
q01L _ ~ 1IN
~-DHTHS - A1T
(1H9TY¥ d0VId 1) memw -¥401dd
SAOVId €9
L0¥ ‘14371 LATHS SANO qq&
0L 10dIN0o 13sdaA¥d
Hlummmnommqnmmmq Y161
9161
o MOIVIINID |
ﬁlqgom.iA_ 5508 A¥¥VO Lo x9¥vVO [tg
L1G1 T1ST te—ccqns n1v
pesn 11617 y16T snNT1d
jou P ~—— %GV
860 = {(IHDIY i —
ANO) —— HGN
k! X T LVH
€on <= | -ATYQ* €540 = ;imn yIaAav
ndo ol LATHS | ons 7SSTINVHL, ova
\I\
VV(\/\ \\l\\
7\\1\,\1\!\ L.

VSSTIINVR

ND-05.007.01

Iv-7- 7

NORMALIZATION

If the most significant bit in the mantissa (BIT 54)
is not a 1 after the subtraction (and there 1is no
overflow), we must normalize the mantissa, that 1is
get a 1 in the most significant bit of the mantissa.

We now shift the mantissa to the left until we get
a 1l bit in this location.

For each left shift required the exponent is re-
duced by 1.

We are now finished and can present the result
to the CPU.

54
0 0 0 0 1 MANTISSA
<————— shift left
' number of"1
shifts
NB! Normalization may only be necessary in the

MINUS cases from previous table.

ND-05.007.01

8

Iv-7-

L1661 n1v
c1¢T Fe—S INT KW
.
790 -~ e - He/AT 2an814g
eoan an - 729vVQ
=0HST i
ndd 0L -va “
L
760 =] /AN ¢ 1 o u— vovn
INANOJIXH
q0L SLAITHS IT9-1
INNOWY 14771 ILAIHS=DHST -04dT14dS 144971 qAaT40
LAdT p= LSHHDIH
LATHS AILVTI dHI ¥04d
-1071TVD HNIN00T
MIOMILAN
e
XI1T¥071¥d
1v
LTST 21GCT bt——— S ANIH
7161
TIST et
- - VA AN
€GN = -
VAR _ P
MIATHEA XI9LVR “
L4971 I
n
on = = TATHS[0ns =7 . owz

VSSIINVK

ND-05.007.01

Iv-7- 9

SPECIAL CASE

The exponents are equal. We are doing a MINUS ope-
ration in the mantissa ALU. The mantissa ALU does
not generate a carry (C54).

This means that the result is negative): we have
subtracted the greater mantissa from the smaller
mantissa. Meaning that we have choosen the wrong
mantissa to the A- and B-bus.,.

The mantissa ALU output is then inverted (2'com-
plemented) (INV G 1516) in the second ALU on the
1514 card before 1t enters the shift matrix, and
the output buffer.

ROUNDING (IN THE FLOATING ARITHMETIC UNIT)

If we are going to round a number, let us say the
ith bit, then we_examine_the bit directly to
the right,.the (i-1)th bit.

The rules for performing this rounding are that

if the (i-1) bit is 0, we leave the ith position
unchanged, and we drop the other bits. If it is 1,
we add 1 to the ith position and drop the other
right-hand bits

The question about rounding arises when shifting
the mantissa to the right, to equalize the expo-

nents.

Two of the shifted out~bits are taken care of
(EN1, EN2) (-1, -2).

One 1is enough for the addition and convert instruc-
tion, and two are sufficient for subtraction.

1f the mantissa 1s already normalized after addi-
tion, the EN1 bit is added to the mantissa (1514.1).

If mantissa overflow occurs, the mantissa is shifted
one location to the right.

ND-05.007.01

Iv-7- 10

Before the shifting, the least significant mantissa
bit (the one to be shifted out) is incremented by
one (ADDOO G 1516) giving a rounded answer if the
least significant mantissa bit was equal 1.

In single precision (32 bits) operation, the 1-bit
(ADD 32, G 1516) is added to bit 32 out of the

mantissa adder.

For those with a bright mind more about rounding
can be found in the NORD-50 REFERENCE MANUAL.

ND-05.007.01

Iv-7-11

FLOATING - POINT ADDITION AND SUBTRACTION

Given 2 floating-point numbers:

A = Ma- 2Ea %2 Placed in CPU reg-block A

i
=
o

¢
3%

&3]

B %2 Placed in CPU reg-block B

or in memory.

We will now calculate the sum (difference)

S = A+ B

Ea:§> Eb <i::COMPARE Ea:Eb :::} Ea'<i Eb
Ea >i3b/Ea=Eb Ea < Eb

Shift Mb Shift Ma
Ea-Eb places Eb-Ea places
to right to right

i
Ea —» Es Eb —#Es
Ms=Ma+Mb

YES / Overflow for N_NO

4\\ Ms ? //

Shift Ms right
one place

(Set most sign
bit = 1) 2. Es~1 —=Es

1. Shift Ms lefq
one place

Egs+l —+Es

YES NO

Is Ms normalized ?
(Most sign bit=1)

A~ S B~—=§

T TN T OO Ty

Iv.

IV-8-1

FLOATING REGISTER SKIP INSTRUCTIONS

ASGF (D) : Add floating registers and skip if result

>
Z 0

ASLD(D): Add floating registers and skip 1f result
<0 %

ASEF(D): Add floating registers and skip if result
= 0

ASUD(D): Add floating registers and skip if result
0

SGF(D): Subtract floating registers and skip if
result € 0

SLF(D): Subtract floating registers and skip 1if
result < 0%

SEF(D): Subtract floating registers and skip if
result = 0

SUF(D): Subtract floating registers and skip if
result # 0

(D): double precision floating register

The instructions are executed as ordinary floating
add/subtract instructions with the result written back
to the CPU register block.

When executing the instructions marked % the SIGN BIT

(C 63) is selected and gated back to the CPU via the
FRSBIT 1line.

When executing the other instructions floating zero
(FZERO) 1is selected and gated back to CPU via the
FRSBIT line.

The FRSBIT signal 1s tested against the IR function
code bits in the CPU (1506), whether the SKIP con-
dition 1is fulfilled or not.

C- RACK OVEPVIEW TY-9-1

FROM CPU

AJO-63 BU 0-63
AU5l5—62 BUS55-62 i
1515 {C79) ATB,;' - SEL CT
MAN;—-_~¢~4X75?3 C2.-€3-Cé-
UA 0-63 [UB 0-63
RSH 3-5
ROT 2x 1511 (C5-C6) SHIFT |nx8
SIGNO RIGHT
UM 0-63
RSHO-2
ROT - SHIFT
] 2x1512 (C7-C8) RIGHT Nx{
]
UA 0- 54 NO-5¢
3
e FLOATING
LR B -
OUND Cﬁ;?3574 iCQ C72/ wmnc
NS5 BUSS ™ gpss C 20 prrser
SELEXP| |UA5462 N56-63 1 SUT-54 @B%M%
LSH3-5 4 £ SUMO
. _ SHIFT
ROT—et 2x 1511 (C13-C14) L EFT Nx8
C54-C62 wo-63
- LSHO-2
o o . _ SHIFT
§§ ROT— 2x 1512 (C15-C16) LgFT Nx 1
])
ce3 UD54 - 61 upo-se
&) el 2x1517 (c17-c8) oy
l Uo-62 (RESULT)
T
5 & 3 TO CPU
s & 3
> S o
S ND-05,007.01
5%
R

4y

o R ST g o A e

SECTION V

EXTERNAL ARITHMETIC A-RACK

ND-05.007.01

Section

DETAILED CONTENTS
R R e

A-RACK GENERAL

INTEGER MULTIPLY

INTEGER DIVIDE

FLOATING MULTIPLY/DIVIDE
MUL-DIV TIMING

A-RACK OVERVIEW

ND-05.007.01

.1 THE A-RACK

In the A-rack, the following instructions are executed:

MPY Integer Multiply 32 bit operands
DIV Integer Divide 32 bit operands
FMU Floating Multiply single precision 32 bit operands
FDV Floating Divide single precision 32 bit operands
FMUD Floating Multiply double precision 64 bit operands
FDVD Floating Divide double precision 64 bit operands

The instructions may either be memory reference instructions
(one operand from memory and one from the register) or
inter-register instructions (both operands from the regi-
ster block).

The operands presented on the data lines from the CPU
are latched in the A-rack before the arithmetic milling
is started with repeated additions for mulitply and re-
peated subtractions for divide.

One card (out of 24) takes care of the floating expo-
nent add/subtract while the mantissa is "milled" in the
same unit as for integer.

An 8-1 line selector - the OUTPUT SELECTOR - selects
the final result of the operation as inmput to a tri-

state driver driving the result back to the CPU.

The result is selected through the SUM-selector and
written back in the destination register via the SUM-bus.

Control Signals to the A-Rack

In addition to operand data given in figure V.1l.1

the following control signals aredecoded in the CPU out of
the function code bits in the IR-register and sent to

the A-rack:

Gen.

on card: Means:
SMPY 1508 Start Integer Multiply Operands latched
SDIV 1508 Start Integer Divide in CPU and ex-
SFMU 1508 Start Floating Multiply term. arithm.
SFDIV 1508 Start Floating Divide milling can
DPM 1505 Double precision start

floating point

NN-NE N7 0O

Gen.:

RYM 1526

OF1 1526

UF1 1526

Time used:

Means:

Data Ready.

lines to CPU

Final result on tri-state

Integer multiply overflow. Integer
and floating divide by zero.

Floating underflow.

The table below indicates the time used by the A-rack
to execute the instructions (text). The time is from
the different START pulses to the RYM pulse.

Instruction:

FMU
FMUD
FDV
FDVD
MPY
DIV

text 1in }15;‘\

0N NN
[N en BN SRR LI SRR

-4.0

MEMORY REFERENCE
OR

INTER-REGISTER

INSTRUCTIONS

XTime used 1is data dependent.

In the following a brief description of binary multiply,
divide and floating point multiply/divide will be given
with some information on how this is implemented in

NORD-50.

ND-05.007.01

A - RACK (MUL - DIV UNIT) DATA FLOW.

v-1-3
FROM B-RACK CPU
% |
l, | | |
AP63-32 AP31-0 BPﬁ?~32 BP31~-0
OPERAND FROM
MEMORY OR REG.
BLOCK B
T r
MPY 32 BITS MPY
i INTEGER !
DIV 32 BITS DIV
- —
-
7777 FMU 32 BITS FMU 32 BITS
g ! !
FDV 32 BITS FDV 32 BITS
LOATING ‘ é
FMUD 64 BITS FMUD 64 BITS
FDVD 64 BITS FDVD 64 BITS
L
. : b !
A - RACK
MUL~-DIV UNIT
4
RESULT
P63-32 P31-0
-
MPY overflow MPY result
INTEGER } !
DIV remainder DIV result
\
> I
FMU 32 BITS
FDV 32 BITS
| T ‘
LOATING
FMUD 64 BITS
FDVD 64 BITS

?\T‘h_(&QTg\ (\CIPT?I\1

INTEGER MULTIPLY

In any number system multiplication consists of
adding a number to itself as many times as speci-
fied by the multiplier. In actual practice bin-
ary multiplication reduces to copying the multi-
plicand whenever the multiplier digit is 1, and
not copying it (or writing zeroes) whenever the
multiplier digit is 0. As in decimal multipli-
cation you must, of course, also shift one place
to the left after obtaining each partial product
and in the end add up all the partial products
to obtain the answer.

The following example illustrates the simple pro-
cedure:

multiplicand (13) multiplier (5)

11 01 X 1 01
1 1 01 first partial product
0000 second partial product
1 1 01 third partial product

product = 1 0 0 0 0 0 1 (65)

We could, of course, have omitted the second
partial product of zeroes by simply shifting
over to the left one additional place. Thus,
binary multiplication can be reduced to the pro-
cess of copying the multiplicand whenever the
multiplier digit is 1, then shifting over one
place to the left (multiply with 2) 1if the next
multiplier digit is a 1, or shifting over one
additional place for each 0O in the multiplier.

The partial products are then added to obtain
the answer.

The method used in most computers is to add the
partial products together as soon as they appear.

ND-05.007.01

An example using this method follows:

multiplicand (15) multiplier (13)
1111 X 1 1 01

1 1 1 product 1
11 11 product 2

1 6001 011 sum
1111 product 3
110060011 final sum

Note that the answer has twice as many bits

as elither number. If both numbers have the same
number of bits , the product will always have
twice as many digits, or be of double length.

INTEGER MULTIPLICATION

MULTIPLICAND MULTIPLIER

MULTIPLIER-REG.
SHIFTED ONE

LOCATION DOWN/
MULTIPLIER BIT

|B-OPR. IF BIT O:

B PARTIAL PRODUCT (4C)
| “DIRECT THROUGH

ADD AC-REG.TO MULTIPLICAND

OQUTPUT OF ALU SHIFTED
ONE LOCATION TO RIGHT

AC-REGISTER

PARTIAL
‘- PRODUCT
REGISTER

Figure V.2.1

ND-05.007.01

Improvements in the Shifting Multiplier

In order to reduce the speed in the multiplication

process a method of
in pairs 18

An example:

multiplicand

multiplier

1 X 11 10 01 00
uwaurlkylwd
| |
i { !
| ! !
1 I l
! ' !
\ | |
01
! |
' f
{ I
§
v 10
I
i
|
f
11
sum : 11 10 01 00

inspecting the multiplier bits
used in the NORD-50.

00 The multiplier is

shifted 2 locations
to the left.
NO ADDITION

Shifted 2 locations
MULTIPLICAND ADDED
TO THE PARTIAL PRODUCT

Shifted 2 locations
TWICE THE MULTIPLICAND
ADDED TO THE PARTIAL
PRODUCT

(Twice the multiplicand
is the multiplicand
shifted once to the left

Shifted 2 locations
THREE TIMES THE MULTL1-
PLICAND ADDED TO THE
PARTIAL PRODUCT

If the MULTIPLIER is latched in the B-register
and PARTIAL PRODUCT~REGISTER is called AC, we

get these four combinations of the two least sign-
ificant bits in the MULTIPLIER (PISO) register.

MULTIPLIER
BIT 1, O
0 0 = 1/4(AC) — AC % AC shifted 2 locations
to the right
NO ADD
01 = 1/4[(aC)+(B)] — AC
1 0 : 1/4[(AC)+2(B)] — AC
1 1 : 1/4[(AC)Y+3(B)] — AC
3(B): Three times the multiplicand is the output

of an adder with one time the multiplicand as one
input, and as the other input, twice the multipli-
cand (the multiplicand shifted once to the left).

ND-05.007.01

V-2-6

N-50 INTEGER MULTIPLY

MULTIPLICAND

BKL

ADDER 1521

"SELECT | B

SELECTOR 1521

1521
Y—ADDERlll (ALU) ¢

TO RIGHT

1521

PARTIAL

PRODUCT
63 JREG. 32

OVERFLOW ||
1522

TO CPU

Figure V.2.2

(FROM MEMORY
OR REG.BLOCK
B)

SHIFTED 2 LOCATION

RESULT

(FROM CPU-REG.

MULTIPLIER BLOCK A)

MULTIPLIER
REG.SHIFTED
TWO BITS AT
A TIME

&}
O O

526
! P1S0Q2

ED3

THE 2 LEAST SIGN.BITS (BITS NOT
ADDED ANY MORE) ARE SHIFTED INTO
THE SIPO REGISTER 2 BIT AT A TIME

% IF ALL THESE BITS
ARE EQUAL, THERE

1522

IS NO OVERFLOW

ND-05.007.01

NORD~50 INTEGER MULTIPLY
(32 bits x 32 bits = 64 bits)

Cycle:

co B-operand (Multiplicand) BP—+F-+>M-+=IB-—>S5B
(via 1523, 1511, 1512, 1523) without change
clocked into the RB-register.

IBO—=SB23(1523.1)—=RB23(1521.7)
IB31—>SB54(1523.4)~[:RB54(1521.7)
RB55(1521.7) Sign.extension.

A-operand (Multiplier) AP31-2 clocked into
the PISO-register on 1521.

APO,1 direct to 1526 for generating control
signals ED2,3 for first operation in next
cycle Cl.

0—AC by clocking YO.

cl Loop, 32 clock pulses (16 iterations, each
handling 2 bits).
The A-operand is shifted out of the SIPO
(PIS0Q2) two bits at a time and choose
RB*0, RB%1, RB¥2 or RB¥3 (ED2,3) to be added
to the AC-register. The output of the Y-
adder is shifted 2 bits to the right and
clocked into the AC~register.

The 2 least significant hits of the Y-adder

YO, Yl (1521.1) are latched on the 1526 card
(AMN1, AMN2) and shifted into the SIPO regi-
ster (1522.1), two bits at a time (Ql).

The SIPO is an extension to the AC-register.

C2 Correction:
If A-operand negative (A31=1):
Then the R*B was added one time too much,
and to get the sign correct, we must subtract

the R°*B.

1/4(AC-1+RB) —= AC ED2=ED3=0
7% YADR=SUB

ND-05.007.01

Cc2

cont. If A-operand positive:
1/4 AC—=AC
NB! Only Y-adder in use.

C3 Present result om P-lines to CPU.

1522.8 OVERFLOW 1522.5 1522.4 RESULT 1522.1
AC52-AC21 AC20-ACO, AMN1, AMN2, IQO0, Q0-Q7

P63-32 P31-0

$ To CPU ,L

MPY OVERFLOW:

Multiplying 2 integer 32 bits come up with a double
precision number, 64 bits.

An overflow condition exists unless all the 32 most

significant bits are equal, and equal to the most signi-
ficant product bit.

The AC52~21 bits are checked for all ones or all
zeroes on the OUTPUT SELECTOR cards 1522,5-1522.8,

1f AC20 and ACS52-21 are not equal an overflow signal
(OFL) G 1524 is sent to CPU.

In Test System:

Overflow-register is shown as LEAST-RESULT:

10/5/77/PK/eml
ND-05.007.01

BINARY DIVISION, INTEGER

Division in any system is the inverse of multiplication.

Tt is the process of determining how many times one number (the
divisor) can be subtracted from another number (the dividend) ,
while still leaving a positive remainder.

The number of times £+his can be done is the result, or the
guotient.

For example, dividing binary 110111 (55) by 101 (5). Answer
1011 (11) remainder O.

DIVIDEND DIVISOR QUOTIENT

110111 : 101 = 1011
-101
11
0
111
-101
101
-101
0 REMAINDER.

In binary division we are either able to subtract the divisor

(in which case the guotient digit is 1), or we are not able to
subtract the divisor (giving a quotient digit of 0).

A way of implementing this in herdware would be to latch the
divisor in a register (B) and the dividend in another register,

the accumulator orxr the AC-register. Refer ro figure V.3.1

After latching the divisor and the dividend, we now subtract
the B-register from the AC-register.

ITf the subtraction is succesful (B>AC), that is it leaves a
positive remainder, a carry is generated by the subtractor.

The carry is fed to a guotient-generator, generating a 1 bit
that is fed to a serial in-parallell out register (SIPO), the
quotient-register.

The carry signal also selects the input to the AC-register:

Tf the dividend is greater +han the divisocr, the AC-B value 1is
fed into the AC-register shifted one location to the left.

ND-05.007.01

TIf, however, the larger number (B) 1is subtracted from the
smaller (AC), no carry is generated (the divisor is too large).

A zero is generated in the gquotient-generator and fed into the
SIPO shifted one location to the left. The AC-register is fed back
to itself by the carry, and shifted to the left in preparation

for another trial.

At the end the AC-register holds the remainder and the result
(the gquotient) is in the SIPO-register.

}

DIVISOR
B REG.
AC
sus — Y-ADDER
- CARRY
Ac kB
AC
QUOTIENT
SELECTOR GENERATOR
SHIFTED
1 LOGATION LEFT|
QUOTIENT REG.
AC REG. S1PO
DIVIDEND REG. fpoemne SHIETED LEFT
5
REMAINDER RESULT (QUOTIENT)

Figure V.3.1 Division Hardware

ND-05.007.01

DIVISION IN NORD-50.

INITIALIZING THE DIVISION.

THE DIVISOR:

To reduce the complexity of determing what multiple of the
divisor can be subtracted from the dividend, the divisor is
aligned to a normalized-position.

The most significant "1" bit in the B-operand (the divisor)

is shifted left to the most significant B-register position
(RB54) .

In hardware this is done by using a priority encodexr to look
for the most significant "1" bit.

The required shift-length for the divisor is found by sub-
tracting the output of the priority encoder "1" bit position
from the most significant bit~position. The shift-length
(SH4-0) is latched for later use.

The divisor is shifted left in the shift-left matrix cards
1511 and 1512, and clocked into the divisor-register (RB).
The B-register is stable during the rest of the operation.

Before the subtractions take place, both operands are made
positive. The B-operand (the divisor) is inverted by the 1523
card (if it is negative). This takes place before the shifting.

THE DIVIDEND:

We have to shift the dividend cne place right if the divisor
was shifted an odd number of places left, because as we shall
see later we are handling the bits in pairs. In hardware we do
this by selecting the An 1 pit as input to the dividend
register (AC).
The dividend is inverted if it 1is negative. This is done in

the X-adder by subtracting the A-operand (dividend) from the
initial zero content of the AC-register.

If it is positive the dividend is added to the zero content of
the AC-register (directly through the adder). The output of the
x-adder is shifted 2 places left and clocked into the AC~
register.

DIVISOR FROM MEMORY OR REGISTER BLOCK B

|

BPO

/

/)

%

<—— |NVERT B IF NEGATIVE —» F

R el

F31

T
v

FO

PRIORITY

SHIFT LEFT MATR?

<t SH4-2

1511
M31 MO
SHIFT LEFT MATRIX e sH1.0
%1512
s
A BPS53 BP23
} : |
| | A
a1 | | B0 |
/L / VoL LA |
v !
¥ (i i
et
SELECTOR 1523
7 ; !
SB54 sB23
%%v DIVISOR R'EG. RB
54 3? 23
ot} integer i

ENCODER

1523 | 1525

g

—

LATCH SHIFT
LENGTH 15625

o
N
./VL?

Floating Mantissa from
Memory or Register Block B

Floating Select

BKL

Floating Double

% ;A/ .
2/)’/;///4 B-operand to Arithmetic {1521)
- 7

%

iy

&= Fjoating Single

Figure V.3.2 Dijvisor (B-Operand) and Remainder Data Flow

ND-05.007.01

% -

Remalnder Data Flow
at the end of operation

DIVIDEND FROM CPU

' Voo
$A30 é AO é,o ‘

A31 Al AQ
1521 SHO

!
selactor (BSEL)

é AC=0 %

e PLUS A 30
1521

X-ADDER kg MINUS [0 - (5A) I AL O
ALU

X54 X21

AC56 AC23

tg—— ACKL
AC REGISTER

]

Figure V.3.3 A-Operand (Dividend) Initial Data Flow

NUMBER OF SUBTRACTIONS

The number of subtractions depends on the number of shifts of
the divisor. The bits are handled in pairs, and the number of
subtractions required for a division with two 32 bit operands
is:

16 - (position of the most sign "1" bit) /2
or
16 - (SH4-0) /2

This means that dividing goes faster with a large divisor
than with a small one. -

If the divisor is a small number, 1 for example then the maximum

time is required to do the division. In this case, the "1" bit

has to be shifted 31 places left to the most significant bit position
This is the equivalent of doing a division using pencil and paper:

When dividing by 1, the guotient will be equal to the divident
and there will be no remainder,

when dividing by a large number, the guotient will be small
and generally will leave a remainder.

As we have mentioned before, there must be an even number of
bit-positions between the decimal-points of the divisor and
the dividend.

ND-05.007.01

DIVISION LOOP

When doing decimal division with pencil and paper, we first
make an estimate or an intelligent guess at what multiple of

the divisor can be subtracted from the dividend still leaving
a positive remainder.

If our quess turns out to be wrong, we reduce the multiple
by one and try again. The final multiple, with a value from
0-9, will then give us the quotient,

The NORD-50 MUL/DIV unit carries out division in the mannex
described above. Refer to figure

To increase the speed of this operation, bits are examined
in pairs. This means that the dividend can be subtracted
either 3, 2, 1 or 0 times from the divisor.

If the subtraction is successful, the gquotient will be either
3, 2, 1L or O.

If the subtraction is not successful, we reduce the multiple

of the divisor by one, and reduce the estimated quotient by
one.

We estimate the guotient by looking at the 2 most significant

B-register bits (B54, B53) and the 3 most significant AC-register
bits AC 56-54.

The estimated quotient bits ED2 and ED3 (G 1526) are used to
select various multiples ofthe divisor register as input to
the Y-adder and the X-adder. The X-addexr input is always one
multiple less than the Y-adder input.

In the X and Y-adder these inputs are subtracted from the
AC-register (the partial remainder-register).

If the subtraction in the Y-adder is successful (YC 57 = 1,)

the output of the Y-adder is selected as input to the AC-register
shifted 2 places left.

Tf the subtraction is not a success, (YC 57 = 0) the estimate
was wrong and the X-adder output is selected to the AC-register.

The gquotient is generated on the 1526 card and if the estimate
is ok, we use the estimate bits ED 2 and ED 3 as the quotient.

Tf the subtraction in the Y-adder is not successful, we reduce the
estimated quotient by one.

The guotient bits are fed into the SIPO-register 2 bits at a time.

ND-05.007.01

BS54 B53 ACS56,5554
NORMALIZED l é l l I
B-OPERAND
l QUOTIENT
ESTIMATE
B 1521 1526
BKL __
DIVISOR REG. £D2 §
D3 A-OPERAND
DIVIDEND —> AC
Bx3 Bx2 Bx1 Bx0 Bx2 Bx1 Bx0O
ED2
1521 s 1521
SELECTOR SELECTOR
Ag AC
1521 1521
Y-ADDER X-ADDER
ED2
Y57
CARRY Y-ADDER
QUOTIENT ;
GENERATOR 21
1526 SELECTOR
et SHIFT 2 POS LEFT
SIPO REG. 1522 1821
AC REG.
& DHHDENDWATNALREMAWDERREGBTER
QUOTIENT
TO CPU REMAINDER

Figure V.3.4

Quotient and Remainder Generation

v

TO CPU

ND-05.007.01

V-3-9

*1Fe1 seoeld ¢ PSIFTUS DY
»qgo7 seoeld g PRIFITUS DY = A uolyy (uoTioeid

“— Y USyl (uoT3ioeIydqns TIngssooonNsunP 192 sTenbo
aqns TTnJFsSseoonspuo sTenbs

(LSOR) Axxed Ioppe-i II
(LGDR) Axxed Isppe-A J1

¥*

: T T 0 T T 0 T = LSO& IT sueTIOND
W 0 T T 0 0 0 0 = LGOA IT s3ueTaond
W @, T - @ - ¥ o ¢¢A“um@@m;x 3ndno
|
” & . € - ¥ @& . ¢ - ¢ @™ - OV Foppe-A 3ndno
1=¢ ‘0=2cd 0=¢® ‘T=2C 0=¢d ‘0 =2 1o BwTISH
M T T
: 1 T 0 T T 0 T = LGDA IT S3USTIOND
0 T T 0 0 0 0 = LSOA IT saueTaond
OdIs O3 0dIS o3
Ul puooss uT 3sITI
plicimleny JuSTIOND
™, ¢ - KN g1 - ¥ o) ﬁH@@@mtx andano
-3
@ . ¢ - W ®.Z - N @ - DY Toppe-x 3ndano
1=¢®@ ‘0= 0=£ ‘T=¢d 0 =¢€ad ‘0 =cdd :onewr3sy
0 T
T 1T T 0 T T T 0 1T 0 0 T T T O 0 1T O T 0 O 0 0 O
pS‘SS196 -] p5/6G19S p5‘G65°95 pG/65796 $G ‘GG 99 pS6G199 PG GG 9G pS‘G65799 ccds $GAS
(sL1d v 'NOILS 'L1SOW 9 v 11dvd :3ANLINOYW dOSIALA

IANLINOVHW ¥3IANIVWIE T

‘37dy¥ 1l LNITLOND

NOISIALC

‘MIANIVWIY TYI LYV

ND-05.007.01

v-3-10

SHIFTING THE REMAINDER BACK

Because the divisor is shifted left at the start of the
operation, the remainder on completion of the operation will
be placed too far to the left in the AC-register.

The remainder must now be shifted to the right the number of
places the divisor was shifted to the left.

Since there is no right shift register in the MUL/DIV unit
we must shift the remaindexr left. Refer to figureV.3.2
to see how this is done.

The remainder in the AC-register is reversed and placed in
the shift-left register and shifted. It is taken out and
reversed again and placed in the output selector for presen-
tation to the CPU.

ND-05.007.01

SIGNS

v-3-11

In integer divison we operate with positive operands and we

have to remember the sign,

of the operation.

If dividend and divisor

we have to invert the quotient.

In hardware this is done as follows:

B31 —p

P NG —
LATCH
BKL

Figure V.3.5

If the A-operand
(that is in fact what is left of the dividend)

negative.

(the dividend)

(p and B operand)

1522
ot Q31

RNV—%

Q0 —B»

[
|
[
QUOTIENT i
i
|
{

i
Q31

e QA > C —

| QA—C B

was negative,

and correct the sign at the end

have different signs,

TQ CPU

& P31

then the remainder
should also be

The IB-signals from the shift-register are inverted on the out-
put selector cards 1522.

ND-05.007.01

V-3-12

DIVIDE INTEGER NORD-50

Cco

Cl

c2

B-operand (the divisor) BP is, if negative, inverted
on the B~input 1523 card - F - M normalizing shift
(shifting the most significant "1" bit left into the
most significant position in the B-register RB 54).
The shiftlength (SH4-0) is saved so that the remainder
can be shifted back in C3. After shifting -- SB, and
clocked into the B-register (1521).

A-operand (the dividend) AP, is shifted one place if
SHO = 1 (odd number of shifts for the divisor) in the
dividend selector (1521).

If the A-operand is negative it is inverted in the
x~adder 1521 and clocked into the AC-register as Xe4d.

NB! AC is now < 4-B-register.

Loop; the number of times the loop is performed is
determined by the shift-length for the divisor (B-operand)
in CO.

For each loop two alternative multiples of RB (divisor)
are subtracted in the X and Y-adder. (The alternative in
the X-adder is one multiple less then the Y-adder.

If Y is positive Y x 4 - AC,

otherwise X x 4 —- AC.

Two bits of the guotient are entered into the SIPO-register

The Remainder in AC is shifted back into its correct
position (shiftlength = SH4-0) AC - F — M shifted - IB,
and inverted (1522) if AP<O.

The Quotient in the SIPO-register 1522 is inverted if
AP » BP<O.

Present result - C - P - CPU

In the TEST-SYSTEM, the remainder register is shown in
LEAST RESULT.

NDP-05.007.01

A/S NORSK DATA-ELEKTRONIKK

Vb FLOATING POINT MULTIPLY/DIVIDE

When multiplying two normalized floating numbers

(Ma - 252 and Mb 2By

we multiply the mantissas and add the exponents

p = Ma oMb .2P2 *ED

when dividing two normalized floating numbers we divide
the mantissas and subtracts the exponents.

Q = Ma/Mp . 2°87ED

We notice that the exponents are added/subtracted and
that they need not to be aligned as in floating addition.

As the simplified block diagramfigure V.4.1 and V.4.2 indicates,
the floating mul/div operations can be divided into two
parts. One part for adding/subtracting the exponents

and one for multiplying/dividing the mantissas.

ND-05.007.01

V-4-2

[*Hp 2an314

VS
-ST
dlav/141HS =
-IN
s I<Z§Ir|| d4 =
A TdTIT0R —
1437 d
S 3
ApmHmm VSSTINVH w
. 1 ﬂmmHHz<x
sgsl |
M “WAON 915
ON |
s LA ON & .
I | lquQMZMMMHWWMm ndo
- LK oV fWWWlEWWMi%hLPEQKp RO¥d
—VI ' oy
Nd) «— 110888 «—doId ' oJ SR SANVYAJO
1 534 & (F=T-dXd
X d¥XH aav
q 4 471 m »MM
51s ~TYRYON
= ~INfe—— gy =
-VH
4 axd 3
X
q
NDS 4 =+ INDIS
q0
AATSNTOXT

WYHOVIQ X019 d3T4T71dWIS
A1dILINW ONTLVO

ND-05.007.01

mq/Adc Ll el ugal

§ vs
ans/LATHS| & ~81
] -ILN
0 lg— -VRig— d9 =
4 DHY
INEI FATAI . d
-100nd VSSILNV X
q
LAIHS ON ILHOTY¥ NOIE
$8HA 9d9-0
1AIHS
VS 71 = VSSILNVH .
-
SI =y LNVOIJINDIS LSOW| ON o
T - LN sar ON | WO
{ i
N NdDw— I1TASHY e—d~ YK SANVYIJO
> (Fe-T+d X) ans
d
- axd w
, 4 4z1 VS
- TYWION -S1I
N9 1 Sa— N-iNle—— av =
\ - -V
4 ans
dxd & d
Ll X
| q
NHS A + NOTIY
¥0
FATSNTIOXE

WOV 1Q %0709 QITJTTAWIS
JATAIT ONTLYOT4

ND-05.007.01

A/S NORSK DATA-ELEKTRONIKK

EXPONENT ARITHMETIC

The exponent treatment for multiply and divide is
taken care of on the Exponent Arithmetic card 1524.
See block diagram figure V.4.3

Both operands are entered intoan operand register by
the BKL-signal. The exponents are examined tosgee if
they are zero. If all bits are zero, it is a zero
number.

If either of the exponents is zero in floating multi-
ply, the result will be zero. Zero is selected as result
on the output selector 1522 (S0=0, Sl=1, S2=1 via

CZRO 1524)

If the B-operand is zero in floating divide, this means

division by zero, and an overflow signal is sent to the
CPU.

Bit 62, the most significant bit of the exponent, the
bias or offset bit is inverted to take away the bias
and get a standard number.

Bit 63, the sign bits are exclusive-ored to get the
sign of the floating point result.

In the Exponent Add/subtract ALU the exponents are added
if floating multiply and subtracted if divide.

ND-05.007.001

A/S NORSK DATA-ELEKTRONIKK

MULTIPLICATION

A normalized mantissa is between 1/2 and 1 and therefore
always contains a 1 in the most significant mantissa bit.

I1f the result of the mantissa multiplication gives a
number between 1/4 and 1/2, leaving a 0 in the most signi-
ficant mantissa bit (AC53 = 0), the mantissa have to be

shifted to the left ome location (multiply by 2) and the
exponent reduced by one.

In hardware a CORR signal is generated selecting an
exponent reduced by one to the output selector to CPU.

DIVISION

If the result of the mantissa division gives a qoutient
between 1/2 and 2 (Q53 = 0), the mantissa has to be
shifted one place down (to the right) and 1 added to the
exponent. In hardware the CORR signal selects an expomnent
incremented by one to the output selector to CPU.

ND-05.007.01

OPERANBS FROM CPU

L

via 1523 1521

B63 AP63 B

Operand from

CPU~-reg. block

AP62-54

Or menmory.

Operand from
CPU-reg. block A

BKL —ed STGN OPERAND LATCH =—BKL
v !
T RA RB
Exclusive 4=
or ZERO
é DETECT
FSGN
RB Azr0 BzrRO R
Bit 62 is—=(
inverted
EXPONENT . ADD (FMU)
ADD/SUBTRACT
ALU 74181 ||l SUB (FDV)
-1 FMU(subtract 1)
AE §::+1 FDV{(add 1)
NORMALIZE ADD
ADDER
7483
AE AE-1 (FMU) t
YAE+1 (FDV) ,
If most sign.
SELECTOR CORR mantissa bit # 1
(AC53)
E54
L
1524 E62-55 FLT
FSGN
l» DRIVER
P54
SELECTOR
1522(.7.8) ; é Bit 54 (least sign exp)
taken from 1524
during floating MUL/DIV
DRIVER
P63 P62 P55 P54
sign
Figure V.4.3 Result Exponent to CPU.

ND-05.007.01

30/3/77/PK/bw.

A/S NORSK DATA-ELEKTRONIKK Vel -7

EXPONENT OVERFLOW/UNDERFLOW

On the EXPONENT ARITHMETIC card 1524, bit 62 (the most
significant bit of the exponent) for both operands is
sign extended.

62
| % § ; = } Y ¥ ¥
i

Sign. ! EXPONENT 9 bits
extension

This gives us two 10 bit sign-extended exponents which
are led into the exponent adder/subtracter ALU. (Adding
for MPY, subtracting for DIV)

The two most significant bits out of the ALU (AE62 and
AEXT) are checked.

These bits should be equal, otherwise we can not repre-

sent the exponent with 9 bits and it is overflow or
underflow.

RAG2 RB62

N T

ADD by EXP. ALU
SUR —* 74181

! ! 4

EQUAL?: NO OVERFLOW, UNDERFLOW.

ND-05.007.01

A/S NORSK DATA-ELEKTRONIKK

OVERFLOW

Exponent overflow indicates that the sum or difference
of the exponents exceeds the capacity of the machine.
A carry is propagated into the sign position of the
floating-word.

The overflow flag is set (OFL,G 1524 to CPU via 1526)
and the result will be the greatest positive or
negative number representable dependent on the sign
of the operands.

All bits except the sign bit are forced to one.

The output-selector signals (SO - §52) are forced to all
ones, (7), selecting a 1 in all bits to CPU, except the
sign bit.

Divide by zero will also be generate OFL.

L.
50, —

*“<::> 0 7] -
OUTPUT SELECTOR
S1, ™ - 1522.1 - 1522.8
@Szo" I
P
74157 '—<::> OFL, ! ;
T L1524 TO CPU
yia 1526 TO CPU
EOFL,

Enable Overflow

ND-05.007.01

A/S NORSK DATA-ELEKTRONIKK

UNDERFLOW

Exponent underflow may be the result if a small positiv
number 1s added to a small negative number. The result
can be so small that it is impossible to represent it by
a NORD-50 floating word.

In this case, the underflow flag is set (UFL,G 1524) and
the result is set to zero.

The output-selector signals (80-S2) are set to 6,
selecting all zeroes through the output-selector 1522 to
CPU.

CZRO, (Underflow)
$ Select upper input
R 1" 12
I—— 0

SO, —
0 l " 6 7

0——~
_(::> S1 . — . OUTPUT SELECTOR
0 <E 1522.1 - 1522.8

0O— -~ _ J—~w
] SZO - A é
P
74157 ¢
| 1524 TO CPU

ND-05.007.01

A/S NORSK DATA-ELEKTRONIKK
V-4-10

MANTISSA MULTIPLICATION

Multiplying the mantissas uses the same circuits as for
Integer Multiply.

56 or 24 bits are multiplied, depending on whether double
or single precision is required.

It is only the 54 or 22 most significant product bits
that are taken care of. The least significant bits, the
bits first shifted out of the Y-adder (Y0,l1 or ¥Y32,33)
are connected to the SIPO as for Integer but not used.

The AC register keeps the final mantissa after multipli-
cation. If the most significant mantissa bit (AC53)
after multiplication 1is not a 1, the mantissa must be
normalized; that is shifted one location to the left.
This shifting is done on the Output-Selector card 1522
by simply selecting the AC register shifted one location
left as input.

s2 | s1]so ROUNDING
0 |0 |0 | FLOATING PRODUCT BITS

TSEPA
o o |1 | NORMALIZED

FLOATING PROD. ACO
ACl ACO|SFPB

bt by

A S — .
(O T U0 T O

L i
‘ %
AC4S (1
AC46 , ' :
2
Acs1 § | f - 3 C% Ci
A ¢ L
AC524 4] (ot " Iy
50 —={ 0 1 -5 Pl PO
S1 — OUTPUT .6

57 ——f SELECTOR 1522.7|)

!

C53

)

P53 TO CPU

ND-05.007.01

AID NURSK DAIA-ELEKTRONIKK

V-4-11

FLOATING POINT MULTIPLY (FMU) NORD-50

Cycle:

Co

C1

C2

C3

B-operand entered into RB-register (1521) via
1523, 1—=RB54 (1523.4)

0 ——= RB55 (BSGN 1521.7)

A-operand entered into PISO on 1521 APO,1 if
double precision or AP32,33 if single —sw control

of ED2,3 on 1526.

0 —=AC (Y % 0-—=AC)

Exponent part AP54-63 and BP54-63 —= 1524,

56 in double or 24 in single pres. clock=-pulse

on CL, 28 or 12 iterations in AC. Same as for
integer multiply.

The mantissa-product which remains in the AC
register is mormalized if necessary, using the
selector on 1522 for the mantissa and selects
the reduced exponent from 1524,

Present result on P~lines to CPU.

ND-05.007.01

A/S NORSK DATA-ELEKTRONIKK Vel—12

MANTISSA DIVISION

Dividing the mantissas uses the same circuits as for
Integer Divide.

The B-operand (the divisor) is latched in the RB-
register,

Aligning the divisor is much more simple than in
integer divide, where we looked for the most signifi-
cant 1 bit and shifted it to the most significant RB-
position (RB54).

In floating the divisor is already normalized, a 1 bit
in the most significant mantissa.

The 1 bit in the mantissa 1s not present in the CPU or
memory, but is inserted on the selector on the B-INPUT
card 1523, when a floating operand is selected. (refer
to figure)

56 or 24 mantissa bits are divided depending on whether
double or single precision 1is required.

In floating divide it is only the generated qoutient
that 1s presented back to the CPU. The remainder
(whats left in the AC-register) is not sent back to
the CPU.,

The Q or the quotient register (located on the
OUTPUT SELECTOR 1522) keeps the final mantissa after
division.

If the most significant mantissa bit (Q54) after
division is not a 1, the mantissa must be normalized;
that is shifted one location to the right.

This is done by generating .ashift pulse (SIKL G 1525)

and shift the Q-register before presenting the
floating quotient to the CPU.

ND-05.007.01

A/S NORSK DATA-ELEKTRONIKK v-4-13

REMAINDER
{ EQUAL O
ED2 —= QUOTIENT Q1 SIPO
ED3 —=GENERATOR = Q-REGISTER
CARRY —# 1526
ROUN-
1522 UN FORCE
$ Q0 DING il
oo T g l Q0 1526/ & "1

| |
| CL SIKL | Q53 Q1
|

|sFqo
ﬂ— l | i
QSL} : ::////////
| OUTPUT SELECT?éZ%%%Q/
\ /A/zero if

—————————————— PésB Pézg///////% precision

The least significant mantissa bit is forced to a 1 in
the rounding circuits on the 1526 card. In one case
this is not done and that is when the result is exactly
represented; when the remainder is zero.

The most significant mantissa bit (Q54) is after
normalization always a 1, and is not sent to the
CPU. This bit is disabled on the EXPONENT ARITHMETIC
card 1524, and instead the least significant exponent
bit is presented on the P54 line to CPU.

ND-05.007.01

A/S NORSK DATA-ELEKTRONIKK

V-4-14

FLOATING POINT DIVIDE (FDV) N-50

CO0 - A and B-operand exponents (bit 54-63) are latched

C1

Cc2

C3

on the 1524 card.

The B-operand BP mantissa—=SB (1523) is clocked
into the RB-register (1521) 1—=RB54 (the hidden
"1" bit in the most significant mantissa 1is
inserted) (1523.4)

0—=RB55 (1521.7)

The AC-register is cleared at the leading edge
at CO.

The A-operand AP mantissa 1is clocked into the AC-
register via the X-selector and X-ALU.
AP53 —e X52 —=AC54

1—sAC55 (the hidden "1" bit in most sign. mantissa)

(1521.7)
0—=AC56 (1524)

The exponents are subtracted on the 1524 card.

56 clock pulses if double precision or 24 clock
pulses if single precision gives 28 or 12 sub-
tractions in the X and Y adder.

Each time 2 alternative multiples of the RB-
register are subtracted and clocked into the AC-
register

if Y > 0 (¥YC57
if Y< 0 (YC57

1) ¢+ 4 - Y—e AC
0) : 4+ X —=AC

il

Two bits of the quotient ED3,2 or ED3,2-1 are
entered into the SIPO register (Q register)

Normalized quotient 1f Q53 (Most sign. quotient)
is = 0.

The quotient in the SIPO, Q register is shifted
one location right, and an exponent reduced by

one i1s selected on the 1524 card.

Floating exponent E55— 62—+ C—P (1522.8)
E54—= B — FC54 — P54 (1524)

Floating quotient in SIPO
Q—= C —= P (1522.1 - 1522.7)

ND-05.007.01

Afo NOHSK DATA-ELEKTRONIKK
V-4-15

ROUNDING IN MUL/DIV UNIT.

Perfect rounding: IN N-50 ADD/SUB-UNIT.

First bit ¢o be discarded

Second.
S R B
1.
1]
+ carry propagation and normalization if nessecary
0
O -

Simplified rounding: IN N-50 MUL/DIV UNIT.

We always force the last representable bit (XO) to a 1.

I1f there was a 0 in XO’ we add a 1 (We add one in 507 of
the cases).

If X, was a 1, we do nothing (We add zero in 50% of the
cases).

If we take into consideration the value of bit X_
get this percentage:

lwe

257 of cases: We add 1 when we should not (one to much)

XO = 0 X_1 = 0
257 of cases: X =1 X = 0
OK 0 1
25% of cases: XO = 0 X_1 =1
257% of cases: We did not get rounding when we should
(one to little) X. = 1 X = 1

0 -1

ND-05.007.01

A/S NORSK DATA-ELEKTRONIKK

BIT

SHIFTED 1

oUT

V-4-16

NOT FORCING A ONE

A one is not forced into the last bit if the result 1is
exactly represented by the significant pitsg.

2 x 2 = 4 and not 4.00001

In multiply we look at the bits shifted out, and if no
"1" bit is shifted out (all bits zero), we do not force
a 1-bit.

If at any time during a division the remainder becomes
zero, (Detected in the X-adder 1521) we do not force
a l-bit.

BIT-FORCING CIRCUITS FOR MULTIPLY

DE~
— o
SOUT TECT ﬁ\\

THE LAST BIT BACK TO CPU (X,)

0

Q0
AND

nit 0 SFPA——= T0 OUTPHUT SELECTOR 152.

Set to.0 1f a "1" bit

¥/F . .
/ 1s shifted out.

T 1526

MPYO (FLOATING OR INTEGER)

NB: FOR SINGLE-PRECISION THE "1" BIT IS FORCED
INTO BIT 32 IN THE OUTPUT SELECTOR.

ND-05.007.01

MUL-DIV TIMING

A1l the operations have the same basic timing.

are four separate cycles to run through,

Co

C1

c2

C3

The time 1t takes for the operanmds to become

stable.

There

To clock the B-operand into the B-register and

the A~operand

and SIPO (during multiplication).

The arithmetic operation takes place.

"Milling" in AC (accumulator),

Repeated additions for multiply,

Repeated subtractions for divide.

Correction cycle.

MPY
DIV

FMU,
FDV

Subtraction te get the sign correct.

Remainder shifted back
Inverting quotients if necessary.

Normalize: add, subtract exponent and
mantissa,

Return result to CPU,

ND~-05.007.01

into AC (dividend in division)

shift

START_ |
LU

CL1

CYCLE

BKL1

SELKLl

RYM
o

START

CL

ACKL

BKL

SELKL

RYM

V-5-2

MUL-DIV TIMING

., CO cl

ACKL1 wmgﬂ ng LJ
L3

]

1 H

0-AC A—= AC

R

OR of all possible start signals.

SFMU Start Floating multiply

SFDV Start Floating divide

SMPY Start Integer multiply

SDIV Start Integer divide

The START signal starts the actual unit and
terminates as response of a READY-signal.

The clock-signal.

One clock-pulse during CO and a number of clock-

pulses during Cl. Two clock-pulses for each
iteration.

In CO the ACKL clears and clocks the A-operand
into the AC-register.

In Cl the partialproduct or the partial re-
mainder is clocked into the AC-register.,

For IMU the subtracted result 1s clocked into
the AC~register.

Clocks the B-operand.

Clocks correction information on the last clock-
pulse in Cl.

Data ready on the CPU-bus.

ND~-05.007.01

BP53-0

[:Z]?S.??

Vm

51

T T i
. 12 })
531 BO=INTEGER " NORD-50 MUL/DI‘/ UNIT (A-RACK)
. n DATA FLOW
AC25 AC56|
) v ¥
e\ Invert BPif neg.
; ALU LSZB le—\ Remainder -« F AP53-D
i A}
Fat Fo PRIORITY g_
T ENCODER /11521
W r : 1523 1525
Shift to “T T MATRI
Shift 1 SHIFT LEFT M E/X7571“‘“5H‘f‘2“% ’l _ 11 s ,
other: I ASHIFT LENGT \ i
Dircet ! 1525 INTEGER —A31430 AD 0----1--0 0
{hrough M3t MO { : !
\ é? %z #__ ,,,,,,] { :
SHIFT LEFT MATRIX . suro | |
¥ 1512 A53 A32 t
N SINGLE Ir‘*’“"‘ f
i 7 B53 T‘gm B22 BO g FLOATING MANTISSA e
1B0-31 IB31 1530 B0’ } ! 55 122 A0
REMAINDER| 4y % T I __|pousie 3 : &
SELECTOR e - __ i FLOATING " M- ABS e X |
1523 i | SELECT ; | {
! J : ! P P ! |
N e !
5§54 5§23 B22 BIO Fioai’ing én_‘ﬂ@—/@31~~"i~ ! {
y g b i multiply 5 ! : |
-——INTEGER — -+ B-REG single | eAD [|
< FLOATING ~#SINGLE Bk " Pisoaa4 1824) 1 o ! ‘ |
! [DTo1T) T — A3z 1 AT by }@] | I
54 321 23 1521 0 A% | 1 oAD |PIspa2 SV o iy £
i . { \ \ | /DIVIDENDA \
) BEBERE /sELecToRYY/ 1524
r T K X
B2 B 526
1 | T ‘*”XS‘B} X 52 '“"‘X21‘%
+7521 ! ; ACES AC54 AC23
T ED2 ED3 . 1
f T T 1 T 1
B3 B2 Bl B0 B2 B B - RB53
I S S VRN AL56 g
TITTTTT i 777 T7i77T7T777T77 7
SELECTOR SELECTOR ﬁg?g QUOTIENT
82l 1521 ESTIMATE
I | | 1526
ED3 y
A;c | /1c bo
F“j’“j““‘g’—“‘ L SUB 111 7T 7T Invert YC57L‘@
I Y-ADDER ADD xxxx X-ADDER }qm’dend) 3 A
: 1524 1) if neg.~AC IQUOTIENT GEN. |=IQO
Sy ! 1526 i— G0
1,70 |
Floati Y4, Y0 a4
oaimg! Y
. a— o o |
Lo TYE 1110 single— o AMNZ nieger
SELECTOR | 1526 2100 mulliply
: ass R R e A ¥
i O QUOTIENT » | saaze QUDTIENT+ AC-EXT,
| 1524 1521 SIPO-REG 1522.5-8 1 1526] | SIPD-REG. 1522
N I @3 Lscaas
w523 [FLOATING EXPONENT
- AP62-54
Bes ape Q54 - Q34, Q33-Q0, 1Q0
(3R L i AL53-0 | BOUNDING]Y AMNT, AMN2Z, 1Q0, 00-Q7
, 1526 "
i & 1524| I(ACS3-0)-1 AC shifted right — 1B0-31
I] A . \\% TIUCTTTTTYY TUETTCY TR
FSGN E62-55 L &/ REMAINDER QUOTIEN
L] Fr54 ACH2-21— Qverflow ’ ACR0-0 INV. 1522, INV. 1522
T B = P£3-32] = P390
not used 0 1 0 H
J i . ; 7 é’ é
O/P R/Q 1 PRODUCT f\)/OiQM. QUOTIENT OVE?':FLOW REM/&!NDER OUTPUT
1522.8 FRODUCT PRODUCT QUOTIENT 1522.7 - 4 [SELECTOR
FLOAT. EXP INTEGER FLOAT. MANTISSA INTEGER
: ¥
b (54— £63-0
.. ¢ xxxx = INTEGER/MANTISSA MULTIPLY
l\ \ I W INTEGER/MANTISSA DIVIDE
; P54 | waw\\ = (NTEGER DIVIDE
e s PL3-0 TO CPU

APPENDIX A

ND-05.007.01

APPENDIX A
NORD-50 OPERATORS PANEL

The idea of the operators panel is to give additional
information about NORD-50.

The DISPLAY PC push-button (lightened when pushed)
display the Program Counter in blocks of 4K in the
ACTIVE ADDRESS lights. When pushing DISPLAY DATA
REF the data reference address will be displavyed
as above.

Thus:

Address 0-7777 will light bit O
lOOOO-l777§8 will light bit 1
20000-37777° will light bit 2, etc.

The indicator light in the middle field gives further

information about any parity error (light in PARITY
ERROR lamp to the left).

The four lamps to the right indicates in which part
of the 32 bit memory word the parity error appeared.

BYTE O = Bits 0-7

BYTE 1 = Bits 8-15
BYTE 2 = Bits 16-23
BYTE 3 = Bits 24-31

The three next lamps indicate in what kind of reference
the parity error occurred.

1. DATA REFERENCE
2. INDIRECT REFERENCE
3. INSTRUCTLON READ

Light in the lower field vuttons in the panel has
the following meaning:

RUN: NORD-50 1is running

STOP: NORD-50 stopped

EXTERNAL STOP: NORD-50 was stopped from NORD-10

STATUS BREAK: NORD-50 was stopped by an internal
error condition

SIMULATE DATA

& SIMULATE

INSTR: NORD-50 fetches data and instructions

from NORD-10 in simulated memory mode
MEMORY DEPOSIT

& MEMORY
EXAMINE: NORD~-50 in STOP mode and NORD-50
memory locations are examined/deposited.

The operators panel 1s connected to the 1500 card in
position B32.

ND-05.007.01

APPENDIX B

ND-05.007.01

APPENDIX B/I
THE NORD-50 TEST SYSTEM

The debugging and maintenance of the NORD-50 is based

on the principles of having a computer test canother
computer.

The NORD-50 TEST SYSTEM is running in NORD-10, simu-
lating the NORD-50 memory.

This gives us the possibility of testing the whole NORD-50
CPU regardless of the shape of the NORD-50 memory.

There 1s always the difficulty when running test programs
that the memory has to be working before the CruU and
the instruction execution can be tested.

Running the test in this way makes it possible to
isolate an error almost regardless of how serious the
error might be.

The error message is printed on a terminal

with information about instruction failing, expected
and achieved results (up to 16384 combinations of data
are used to test one instruction).

Cards may easily be interchanged to observe if the

error follows the card or not. The TEST SYSTEM will

in fact never be destroyed by pulling cards in and

out of NORD-50, since the program is located in NORD-10.

The error may be isolated by the use of an oscilloscope
under the TEST SYSTEM, because the failing test is re-
seated with the bit combination failing until the next
test or the next bit combination is wanted by the
operator.

For every test the scope triggering signal and debugging
hints are given in the manual.

ND-05.007.01

The TEST SYSTEM responds to the following single
letters commands:

D

Display further information about the current error;
a short description and name of the test program,
followed by the code of the instruction.

Continue; continues the test with the next input
data.

Back; restarts the current test with data taken
from the beginning of the input data table.

Next test.
Previous test.

Reset; restarts from the first program in the
test table.

ND-05.007.01

APPENDIX B/II B.IL.1

EXAMPLES OF NQRD 5Q TEST SYSTEM RRINT QUT:

10601
NORD-50 TEST SYSTEM RUNNING

TRANSFER TEST NO. 0
INFUT DATA O 000 000 000 000 Q00 0 000 000 Q00 000 000
QUTFUT DATA O 001 000 600 000 000 O 001 000 000 000 000
i

1 TO Ba COMM.

N
TRANSFER TEST NO. s
INFUT DATA © 000 000 000 000 000 O 000 000 000 000 000
QUTFUT DATA O 001 000 000 000 000 0 001 000 000 000 000
It
T2 Sn/7h0

TRANSFER TEST NO. 4

INPUT DAT& 1 111 1idL 231 1311 11t 6 1 0 T s A A T I A A s
9 QUTFUT DATA 1L 114 111 111 110 000 A T T A A A A A A A A

Tt

T7 LIOR/STR
INSTR. ¢ 000 000 001 001 100 O 101 000 000 000 000

— s e e o o ot v e . i v o o 7 . S i, S e o S S S T 7 YRS, R o S D S BOTE D S Y S S 3 G S S T 448 S S LS T et o M Sl W B o Y S s it St B

fRﬁNSFER TEST NO. 5
INPUT DaTa 1 111 i1 1141 111 111 A T 1 T R T 1 W I 1 S A
QUTFUT TaTa L 110 144 i1 11l i 10110 111 141 111 o1t
b
T7R LIOR/STR
INSTR. O 000 GO0 001 001 100 O O11 tii o 1id i1l o1ii
N
3 TRANSFER TEST NG.]
CNFUT DaTa 1 111 11l 111 11t 11d 1 111l 111 111 1ii L1l
QUTPUT DATA 1 3110 414 141 111 111 110 111 1311 111 1t
G
TRANSFER TEST NO. G
INFUT DaTa 1 o11d L2134 11e 111 111 R T O T A T A A A A R R 0
OUTEUT DATA 1 110 111 111 111 111 10110 111 111 fii 116
G

ey

v e v h ot e o e s e s 3 i e S i AR SR Y S G P PR I VYR i e D S M g o o o4 D N SR D ST e A SO . N B T YD e OO S

TRANSFER TEST ND. 23
INFUT DATA O 000 000 000 000 000 O 000 000 000 000 001
QUTFUT DATa O 000 000 0Q0 000 000 0 000 Q00 100 000 001
I
T76& RTWS JUMF
INGTR. O 000 000 010 000 100 0 000 000 000 000 000
C
4 TRANSFER TEST MO, 23
INFUT HATA O 000 000 000 000 000 O 000 000 000 000 010
QUTEUT TaTa O 000 000 000 000 000 O 000 000 100 000 010
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>