NORD - 50 |
REFERENCE MANUAL

' NORSK DATA AS

l

00000000
0000000

~ &

Bk
e
%/

)

A
e 4

NORD-50
REFERENCE MANUAL

REVISION RECORD

IRevision

Notes

|

02/76

Original Printing

NORD-50 Reference Manual
Publication No. ND-05.003. 01

A/S NORSK DATA-ELEKTRONIKK
Lorvenveien 57, Oslo 5 - Tif.: 21 73 71

ii

TABLE OF CONTENTS

—

bk ped bl ped ped jed ek b ek ek ek ek bl el e ped
O W W W WWW WO -3 U W+

bk ped pd ek et
00 ~3 O L1 B O B Mt

po

BN DN

H> QO DO

[Y e
cooC O
IS O

bt et el
OO

-1 D

INTRODUCTION
GENERAL DEFINITIONS

Word

Instruction

Integer

Bits and Bit fields

Floating Words

Floating Point Number

Integer Arithmetic

Floating Point Arithmetic
Register Structure of NORD-50

P Register
Instruction Register
General Registers
Floating Registers
Base Registers

Index Registers
Modification Registers
Auxiliary Register

Syntax of Instruction Descriptions

:= Assignment Operator

+, -, #, / Arithmetic Operators
> == # < < Relation Operators
Logical Operators

Non-conditional Instructions
Conditional Instructions
Instruction Execution Times

MEMORY REFERENCE INSTRUCTION

Introduction
Instruction Word
Memory Addressing
Instruction List

ND-05.003 01

o
ja

HA bt b ek b bk ek fed
1
Lo GO DD DD b b

T Y U Gy W Ry WY
i
ENTE IRS RN I NN NS

I]
(]

PO TN T e
I

{

i
o o @

w

.

WWWWWWWwWwWwWwWwwwWwWww www
LWWWWWWWWwWwWwWwLWwWwWwWw Wi~

WLWWwwWwwWwwww

O N T
L W W O DD et
LI DN

LWWWL wWwwww

WG -1 U H WD

iii

INTER-REGISTER INSTRUCTIONS

Introduction
Instruction Layout
Inter-register Instruction Descriptions

STOP

RIO : Register Input/Output

RIN : Register Input

ROUT: Register Output

SHR : Shift Register

SHD : Shift Double Precision Register

BST : Bit Set

BCM : Bit Complement

BCL : Bit Clear

BSZ . Bit Skip on Zero

BSO : Bit Skip on One

FIX : Convert Floating to Integer

FIR : Convert Floating to Rounded Integer

FIXD : Convert Double Presision Floating to Integer

FIRD : Convert Double Precision Floating to Rounded
Integer

FLO : Convert Integer to Floating

FLOD : Convert Integer to Double Precision Floating
LRO : Logical Register Operation

IRO : Inter-Registe A, ithmetic
FRO : Floating Point Arithmetic
IRS : Integer Register Skip

FRS : Floating RegisterSkip

ARGUMENT INSTRUC TION
Introduction

Argument Instruction Layout
Instruction Description

DLR : Direct Logical Operation
DAR : Direct Arithmetic Function
DSK : Direct Skip *

SUMMARY OF INSTRUCTIONS

APPENDIX A

ND-05.003. 01

N
ot

Poror

wwwwwwwwﬁowwwww W W W
YOO CTUUTUTHE D WWNDN N

]
-1 =3

| It
0 ~3

i
= o

OO

1.1

1.3

1.4

1-1

GENERAL DEFINITIONS

Word

The word is the basic storage unit, both in memory and in the central
processing unit, CPU. The wordlength of NORD-50 is 32 bits.

Each word in NORD-50 has a unique name which is the name of a

register or an address to a word in memory. The content of a word
is denoted: (name of word).

Instruction

Contents of a word interpreted as an instruction to the central
processor, CPU.

The instructions in NORD-50 are always one word long. The instructions
are divided into three groups as follows:

a) memory reference instructions, Section 2
b) inter-register instructions, Section 3.

C) argument instructions, Section 4,
Integer

Contents of a word interpreted as a binary number.

Negative integers are represented in two's complement. Arithmetic
is performed in two's complement,

One's complement is obtained by setting each bit in the word to its
opposite value. Two's complement is obtained by adding one to the
one's complement of the word.

Bits and Bit fields
Each bit in a word or floating word has an unique index as follows.

The least significant bit is bit 0. The most significant bit is bit 31.

In double precision floating words bit 63 is bit 31 in the first of the two
words making the floating words. Bit 0 in the double precision
floating word is bit 0 in the second of the two words.

The content of bit i in a word is denoted: (name of word i). A number
of contiguous bits in a word is called a bit field. The bit field
ranging from bit i to bit j is denoted: name of word The content of

a bit field is denoted: (name of word i—j)' mr

ND-05.003.01

1.

o1

6

1-2

Floating Words

A single precision floating word consists of one 32 bit word. A double
precision floating word consists of two contiguous 32 bit words in
memory, logically connected to give one 64 bit word. The first word

of the floating word is called the left portion word, the second word

is called the right portion word. Thus, bit field 0-31 is in the right
portion word and bit field 32-63 is in the left portion word of the double
precision floating word. The address of a double precision floating word
is the address of its left portion word. Cfr. Section 1.9.4, Floating
Register.

Relation between words and double precision floating words in memory:

bitgl wordi b1tO bl’c31 word i1 blt0

bit 63 double precision floating wordi bit 0

In the description of the instructions, double precision floating point word
will be denoted: word word

Floating Point Number

A floating point number is given by its mantissa, m, and exponent, n,
as follows:

n
number =m -« 2

A floating point number is stored in a floating word, cfr. Section 1.5,
Floating Words.

The representation of m and n in the floating words are as follows:

Single precision
bit 0-21+1bit mantissa, m

bit 22-30 exponent , n
bit 31 sign of mantissa , m is negative if bit 31=1

Double precision

bit 0-53+1bit mantissa , m
bit 54-62 exponent , n
bit 63 sign of mantissa , m is negative if bit 63=1

The range of the exponent is from -37 Tg to +3177 éx}a)émg thee%'aé)ge of
the floating point number approx1mately from 10 to +10

exponent is represented in a 9 bit field but is biased by 4008, i.e,
4008 is added to the exponent to make it a positive number.

Note: The one extra bit in the mantissa is the most significant, and is
set to one if not all bits in the exponent is zero. It is removed in the result.

ND-05.003. 01

1.

1.

1.

7

8

9

1-3

The length of the mantissa is 23 bits in single precision, which corres-
ponds to about 7 decimal digits.

The length of the mantissa in double precision is 55 bits, which corres-
ponds to about 16.5 decimal digits.

The floating point numbers have to be normalized before CPU can
operate properly on them. There is no method for the CPU to determine
whether a number is normalized or not. All results from the floating
arithmetic are normalized.

Integer Arithmetic

Integer operands are always one word. Negative numbers are repre-
sented in two's complement.

In inter register arithmetic the add and subtract functions may affect,
or be affected by a carry bit, CB, if the proper subcode is specified.

A multiply instruction will affect an overflow register, OR, which
will contain the 32 most significant bits of the product. A divide
instruction will affect a remainder register, RR, which will contain a
32 bits remainder after the division.

Arithmetical overflow or a positive product where OR is non-zero
(OR is all ones for negative products) may, if specified, cause a
monitor call.

Floating Point Arithmetic

The results of the floating add and subtract functions are rounded.

As rounding indicators are used the two most significant of the

bits which are shifted out to keep a 23 bit or a 55 bit mantissa. More

about this rounding in Appendix A.

In floating multiply, bit 0 in the final result is normally set to one
Bit 0 is not set to one if the shifted-out bits are all zero.

In floating divide, bit 0 in the final result isnermally set to one.
Bit 0 is not set to one if the remainder is zero.

Register Structure of NORD-50
Registers are storage cells in the central processing unit, CPU.

The register used by the programmers in NORD-50 is one word long
(32 bits) or one double precision word long (64 bits)

ND-05.003. 01

1.

1.

1.

1.

9.1

9.2

9.3

9.4

1-4

P-Register

The program counter, P contains the address of the instruction being
read from memory for execution by the CPU. P is one word long,
All instructions affect P. The instructions increment P by one,
except the stop, jump and skip instructions.

Instruction Register

The instruction register, IR, contains the instruction being executed
by the CPU. IR is one word long.

General Registers

The NORD-50 CPU has 64 general single word registers. 32 of these
may be used as single precision floating registers, or all 64 may be used
to form 32 double precision floating word registers.

The general registers are normally used by the programs as storage
cells for operands and results.

Some of the registers may be used as base registers, index registers
and modification registers. Cfr. Section 1.9.4 - Floating Registers,
Section 1.9.5 - Base Register, Section 1.9.6 - Index Register, and
Section 1.9.7 - Modification Register. See also Figures 1.1 and 1.2,

The 64 general registers are denoted GRg, GRqy,...,GRgg in the
descriptions,
Note: GR(always contains zero. This implies that (FR) =0,

(BRg) = 0, (XRq) = 0 and that MR, cannot be used as
modification register to GRy,.

Floating Registers

There are 32 floating point registers with 32 or 64 bit wordlength,

For double precision where wordlength is 64 bits, one floating register
consists of a pair of general registers. The exponent part will always
be in the same general register regardless of word length.

The 32 floating registers FR - FRy5 and FR3g - FR,, are organized
from the general registers as follows:

Single precision Double precision
0 <1<«186 FRi = GRi FRi = GRi, GRi+16
32 1 <« 48 FRi = GRi FRi = GRi, GRi+16

Floating registers are denoted F in single precision, and FD in double
precision.

ND-05.003, 01

A — FIXED POINT

1-5

0 GR16, MO GR32 GRag
GR1, x 1, 81 GR17, M1 GR33 GR49
GR2, x 2, B2 GR18, Mg GR34 GRSO0
GR15, X156, 815 GR31, M16 GRA47 GR6E3
B — 32 BIT FLOARING POINT (SINGLE PRECISION)
0 FR32
FR1 FR33
FR2 FR34
TRANSPARENT TRANSPARENT
FR15 FR47

C — 64 BIT FLOATING POINT (DOUBLE PRECISION)

0 FDR32
FDR1 FDR33
FDR2 FDR34
FDR15 FDR47

Figure 1.1: NORD-50 — Register Block
‘ND=-05.003. 01

GRO - 15
X0 -~ 18
BO -~ 15

FRO — 15

FDRQO - 15(most)

1-6

[

GR 16 ~— 31
MO - 15

FDRO— 16 (loast)

GR32 ~ 47

FR32 — 47
FDR32 — 47 (most)

L

GR48 — 63

FDR32 — 47 (least)

L

Figure 1.2: NORD-50 — Register Block Lay-out

ND-05.003.01

1.

9.

[}

1.9.6

1.

1.

9.7

9.8

Base Registers

The 16 first general registers may be used as base register, BR.
BRi:GRi 0£i <16

Cfr. Section 2.3 - Memory Addressing - for further description.

Index Registers

The 16 first general registers may be used as index registers, XR.
XRi = GRi 0£i <16
Cfr. Section 2.3 - Memory Addressing - for further description.

If the register has been used as a destination register of a floating
point arithmetic operation or double shift, the result cannot be used
as a base or index address modification.

Modification Registers

Associated with each of the first 16 general registers there is one
modification register, MR. The modification registers are organized
from the general registers as follows:

MRi=GR 0<i £L16

i+l6

The modification registers are used to hold an increment to base or

index registers in certain jump instructions. Cfr. Section 2 - Memory
Reference Instruction.

Auxiliary Register

The overflow register, OR, is used to hold the upper 32 bit part of
the product of a multiplication.

The remainder register, RR, is used to hold the remainder after a
division. OR and RR can be read and written by RIO-instructions.

ND-05.003. 01

.10

.10.1

.10.2

.10.3

.10.4

1-8

Syntax of Instruction Descriptions

= Assignment Operator

Set data element to the left of := equal to the data element at the
right side of :=,

+, -, * / Arithmetic Operators

The mode of arithmetic operation is shown by using integer word
indicators for integer arithmetic and floating word indicators for
floating point arithmetic.

>2 =# << Relation Operators

The relation operators are used to show arithmetical relations.
A relation has the value true or false.

Logical Operators

The logical operations are done by using two operands, each one word
long, giving a one word result. However, the logical operations are

by its nature single bit operations. They are done on pairs of operand
bits, which are made by taking the bits with the same bit address from the
two operand words. The result is stored in the same bit position in the
result word.

Following is a description of the logical operations as single bit
operations.

Logical OR |, V/

A 0 o0 1 1
B (0 1 0
AvB|{ 0 1 1 1

—

Logical exclusive OR , V

A 10 0 1
B 10 1 0 1
AYB1 0 1 1 0

Logical AND , A

A 10 0 1 1
B |10
AlB 1O 0 0 1

o
<
p—

ND-05.003, 01

1.10.6

1.10.7

1-9

Logical Complement , — (one's complement)

A 00 1 1

=

A 1 1 0 0

The logical complement is a one operand operation. Each bit is set
to its opposite value. The one's complement of a word is not its
corresponding negative value. Negative integer numbers are repre-
sented in two's complement.

Non-conditional Instructions

A non-conditional instruction is described by one or more assign-
ment statements. If there are more than one assignment statement,
they will be connected by the word AND. The assignment statement
is executed in the sequence they are shown.

Note: In all instructions P is incremented by one unless otherwise
specified.

Conditional Instructions
The conditional instructions are described as follows:
IF relation is true

THEN non-conditional instructions
Instruction finished

ELSE non-conditional instructions
Instruction finished

If there are statements before the conditional phase, the word AND
is used to connect the "IF ... ' to the rest of the description.

ND-05.003. 01

1.

11

1-10

Instruction Execution Times (us)

Break conditions set: None
LDR, ADD 1.56
STR 1.62
LDD 2.40
STD 2.37
FAD 1.84
FADD 2.561
RATF, RAFD, SHIFT, BIT 0.84
FMU, FDV 4,76
RMF, RDF 3.74
RMFD 7.18
FDVD 8.97
RAD, ADDA 0.75
MPY 5.77
DIV 2.52-5.79
ADM 2,30
JFM+ 0.75
JEM+ 1.40
EXC (IM) 1.30
EXC 2.12

ND-05. 003. 01

Store

1.56
1.77
2.40
2.64
1.84
2.51
0.84
4.76
3.74
7.18
8.97
0.75
5.T17
2.52-5.179
2.45
0.75
1.40
1.30
2.12

N M RO R U DT O W 1 W ok © N NN e

.76
.84
.70
.70
.89

69

.84
.82
.74
.18
. 08
.80
.83
.58-5.83
.64
.80
.60
.50
.42

2.1

2.2

2-1

MEMORY REFERENCE INSTRUCTION

Introduction
The memory reference instructions have in common that the execution
of an instruction involves calculation of a memory address. In some

of the memory reference instructions the memory address is used as
operand, i.e. jumps and remote execution.

Instruction Word

Instruction Word, IW

I X B FC R/F/FD D

31 21 23 18 12 0

Indirect Address Word of level j, LAWJ-

Ij Xj Bj 0 Dj
31 21 23 20 0
Iw : Instruction Word
1 : Indirect addressing flag
X : Index register designator
B : Base register designator
FC : Function Code

R/F/FD General register, floating register or double
precision floating register designator.

D : Displacement 0< D < 4096

IAWj : Indirect Address Word at level j

Ij : Indirect addressing flag in IAW; Iy =1

Xj : Index register designator in IAWj

B; : Base register designator in LAWj

Dj : Displacement in IAWj, OéDj< 1 048 576

Note: If floating operation is specified, the R/F/FD field is used to
select one of 32 floating registers. Floating registers are denoted Fi
for single precision, and FDi for double precision, 0 £i <16 or

32 £i <48. The register number is given by the X-bits in the field.
The Y-bit is used to determine whether it is a single or double precision
operation. Y = 0 gives single precision, Y =1 gives double precision.

R/F/FD-field| X| Y| X |X|X|X
17 16 15 14 13 12

ND-05.003. 01

2.3

2-2

Memory Addressing

All memory reference instructions calculate a memory address.
The result of this calculation is called the effective address, Ea.

The memory addressing may be direct or indirect. When the addres-
sing is direct, Ea is calculated without memory reference (except for
the read of the instruction). When indirect addressing, the CPU has
to reference the memory for operands to the calculation of Ea. We
say that each memory reference, which is done to calculate Ea in one
instruction, requires one level of indirect addressing. The maximum
number of levels possible in the NORD-50 is 16 in addition to the read
of the instruction.

The algorithm for calculating Ea is as follows: (symbols defined in 2. 2)
Eag = (RB) +(Ry) + D
if I =0, then Ea = Ea,

Eal = (RBl) + (Rxl) + Dy, IAW1 = (an)

Ea; = (RBJ_) + (RXj) + D,

j» TAW; = (Ea,_

N

Ea = BEA;, Ij =0, 04] £16, =1, 0 £ i <]

Note: Each level of indirect addressing adds one 'read instruction time"
to the execution time.

A store operation to the location immediately following the storing
instruction will have a special effect. The storing will be executed
correctly, but the next instruction will be the old content of the
location.

Example: STR REG, *+1,

Indirect addressing is not allowed for the instruction EXC.

ND-05.003, 01

2.4

Instruction List

FC

0 Refer to inter register and argument instructions.

1 RTJ

2 EXC

3 MIN

4 CRG

5 CRL

6 CRE

7 CRD

Return Jump
(R) : =(P) +1 AND
(P) : = Ea

Remote Execute (Two instructions)
R=0, (IR):=(Ea)
R=1, (IR):=Ea

Memory Increment

(Ea) : = (Ea) + (R) +1 AND

IF (Ea) : = 0 THEN (P) : = (P) + 2
ELSE (P) : =(P) +1

Skip if register is greater or equal
memory word

IF (R) = (Ea) THEN (P) : = (P) + 2
ELSE (P) : =(P) +1

Skip if register is less than memory word
IF (R) < (Ea) THEN (P) : = (P) + 2
ELSE (P) : =(P) + 1

Skip if register and memory word
is equal

IF (R) = (Ea) THEN (P) : = (P) + 2
ELSE (P) : = (P) + 1

Skip if register not equal

memory word

IF (R) # (Ea) THEN (P) := (P) + 2
ELSE (P) : £ (P) +1

ND-05.003. 01

FC

10

11

12

13

14

JRP

JRN

JRZ

JRF

JPM

JNM

JZM

Jump if register is positive
IF (R) > 0 THEN (P) : = Ea
ELSE P) :=(P) +1

Jump if register is negative
IF (R)< 0 THEN (P) : = Ea
ELSE (P) : =(P) +1

Jump if register is zero
IF (R) =0 THEN (P) : = Ea
EISE (P) : =(P) +1

Jump if register is non-zero

IF (R) # 0 THEN (P) : = Ea

EISE (P) : = (P) +1

Modify register by its modification

register. If register is positive,
then jump

(R) : = (R) + (Mp) AND

IF (R)= 0 THEN (P) : = Ea

ELSE (P) : = (P) + 1

Modify register by its modification
register. If register is negative,
then jump.

(R) : (R) + (MR) AND

IF (R) < 0 THEN (P) : = Ea

ELSE (P) : = (P) +1

Modify register by its modification

register. If register is zero,
then jump.

(R) : = (R) + (Mp) AND
IF (R) = 0 THEN (P) = Ea
ELSE (P) = (P) + 1

ND-05.003, 01

FC

15

16

17

18

19

20

21

22

JFM

ADD

SUB

AND

LDR

ADM

XMR

Modify register by its modification

register. If contents of register
is non-zero, then jump.

(R) : = (R) + (Mp)

IF (R) # 0 THEN (P) : = Ea
ELSE (P) : = (P) + 1

Add content of memory word to
register

(R) : = (R) + (Ea)

Subtract content of memory
word from register

(R) : = (R) - (Ea)

Make ''logical AND" between

memory word and register.
Result in register.

(R) : = (R) N\ (Ea)

Load content of memory word to
register

(R) : = (Ea)

Add contents of register to
memory word

(Ea) : = (Ea) + (R)

Instruction set aside for future
extensions.

Exchange contents of registers
and memory word.

(R) : = (Ea) AND
(Ea) : = (R)

ND-05.003, 01

FC

23

24

25

26

27

28

29

30

STR

MPY

DIV

LDD

STD

FAD

FADD

FSB

2-6

Store register in memory word
(Ea) : = (R)
Multiply contents of register

and memory word and set result
in register.

(R) : = (R) * (Ea)

Note: Upper 32 bit part of 64 bit
product is in OR.

Divide content of register with
content of word. Quotient is in
register. Remainder is in the
remainder register,

(R) : = (R) / (Ea)
Note: Remainder is in RR,

Load double precision register
with content of double precision word.

(FD) : (Ea, Ea + 1)

Store content of double precision
register in double precision word
(Ea, Ea+1) : = (FD)

Add content of floating word to
content of floating register

(F) : = (F) + (Ea,)

R/F/FD-field [X]o [X[X[X[X]

Add content of double precision
floating word to content of double
precision floating registers

(FD) : = (FD) + (Ea, Ea + 1)
R/F/ FD-field | x1[x[xIx][x]

Subtract content of floating word from
content of floating register

(F) : = (F) - (Ea
R/F/FD-field | X0 [X[X[X][X]

ND-65.003. 01

FC

31

32

33

34

35

FSBD

FMU

FMUD

FDV

FDVD

2-7

Subtract content of double precision
floating word from content of
double precision floating register.

(FD) : = (FD) - (Ea, Ea+1)
R/F/FD-field
Multiply content of floating word by

content of floating register. Result in
floating register.

(F) : = (F) * (Ea)
R/F/FD-field[X]0[X[X[X|X]

Multiply content of double precision
floating word by content of double
precision floating register. Result
in double precision floating register.

(FD) : = (FD) * (Ea, Ea+ 1)
R/F/FD-field [X[X[X[X[X]
Divide content of floating register

by content of floating word.
Result in floating register.

(F) : = (F) / (Ea)
R/F/FD-field [X][0]X[X[X[X]

Divide content of double precision
floating register by content of double
precision floating word. Result in
double precision floating register.

(FD) : = (FD) / (Ea,Ea + 1)

R/F/FD-field x/x[x]

ND-05.003. 01

3.2

3-1

INTER-REGISTER INSTRUCTIONS

Introduction

The inter-register instructions normally affect the general registers,

or floating registers organized from the general registers. In their
general form, the instructions specify two operand registers, called
source register A and source register B, and one result register, called

the destination register.
The usage of source registers and destination registers is completely

general. It is possible to specify any registers as source registers and
destination registers.

Some of the inter-register instructions have special forms which will
be described under the specific instruction.

Instruction Layout

Instruction Word, IW

0 | RFC RSC 0 DR/DF/DFD SRA/SRAD | SRB
31 27 23 18 12 6
w Instruction Word
RFC Inter-Register Function Code
RSC Inter-Register Sub-function Code
SRA Source Register A designator
SRAD Double precision Source Register A designator
SRB Source Register B designator
DR Destination Register designator
DF Destination Floating Register designator
DFD Destination Double Precision Floating Register
designator

The following abbreviations will also be used:

BN Bit Number
SC Shift Count

Note: For all instructions except FIX, FIXD, FIR and FIRD, the
destination (DF/DFD) determines whether it is a single or double

precision operation, i.e. whether SRA and, if used, SRB are single or
double precision.

For the FIX, FIXD, FIR and FIRD instructions SRA/SRAD determines
whether it is single or double precision.

ND-05.003. 01

3.3 Inter-register Instruction Descriptions
3.3.1 STOP (Monitor Call)

Stop NORD-50 CPU and call monitor program in NORD-10.

W
0 CODE
31 18 0
(W) g3 =0
(IwW) 0-17 = code used to specify monitor function
(P) : = (P)
3.3.2 RIO : Register Input/Output

Transfer content of a specified external register to a specified register,
or opposite.

0 [o0l0i0i1] RSC 0 DR SRA EXT.REG.

{ § -y

31 27 23 18 12 6

RSC =90 Read
RSC =1 Write

EXT.REG: External Register
2 : Overflow, OR-register
3: Remainder, RR-register

ND-05.003.01

3-3

3.3.3 RIN : Register Input

Transfer content of specified external register to a specified register.

0lojoi0it] 0 0 DR 0 | EXT.REG
31 27 23 18 12 6 0
EXT.REG: External Register
2: Overflow, OR-register
3: Remainder, RR-register
3.3.4 ROUT: Register Output

Transfer content of specified register to specified external register.

0 0§0f0 1 050301;1 0 0 SRA EXT.REG
31 27 23 18 12 6 0
EXT.REG: External Register
2: Overflow, OR-register
3: Remainder, RR-register

ND-05.003. 01

3.3.5 SHR : Shift Register

Copy content of SR to DR and shift DR.

0olor 40 L| R| SM 0 DR SRA SC
31 — ‘2’7 26 25 23 18 12 6 0
RSC divided in three fields, 1L, R, and SM
L=1 Shift left
R=1 Shift right
SM Shift mode
SM=0 Rotate register
SM=1 Rotate register
SM=2 Arithmetical shift. For left shift same as

logical. For right shift bit 31 is copied to each
bit shifted in (sign extension).

SM=3 Logical shift. The bits which are shifted out
of the word are lost and zeroes are put in the
other end.

0 £8C £31

(DR) : = (SR) AND
(DR) : = (DR) * 25C

If both L =1 and R = 1, then the right will be performed first and then
the left shift.

3.3.6 SHD : Shift Double Precision Register

Copy SRA to DFD and shift DFD.

0jo;¢ 11| L|R|SM 0 DFD SRA sSC

I

T T
' t

i i

) .

31 27 2625 23 18 12 6 0

Description as for SHR, Section 3, 3.5, except 05SC £63.

ND-05.003, 01

3-5

3.3.7 BST : Bit Set

Copy SRA to DR and set specified bit in DR to one.

IR T 0 DR SRA BN
SR e
31 27 23 18 12 6
(DR) : = (SRA) AND
(DR) =1
3.3.8 BCM : Bit Complement
Copy SRA to DR and complement specified bit in DR.
ofortiero[i i de o DR SRA BN
i ! .
31 27 23 18 12 6
(DR) : = (SRA) AND
(DRg\) ¢ =BRAL)
3.3.9 BCL : Bit Clear
Copy SRA to DR and set specified bit in DR to zero.
0 o.;'zio'u -1-§1§ O 0 DR SRA | BN
} il ad.
31 27 23 18 12 6

(DR) : = (SRA) AND

(DRBN) := 0 ELSE

3.3.10 BSZ : Bit Skip on Zero

Copy SRA to DR and skip if specified bit in DR is zero.

0forti 10 1;{1{0 ol o DR SRA
L I

BN

:
}
31 27 23 18 12 6

(DR) : = (SRA) AND
IF (DRp,) = 0 THEN (P) : = (P) + 2
ELSE (P) : = (P) + 1

ND-05.003, 01

3.3.11

3.3.12

3.3.13

3.3.14

3-6

BSO : Bit Skip on One

Copy SRA to DR and skip if specified bit in DR is one.

J

0 N

0111111151 010 0 DR SRA BN
| . |

T
{
A

-
-

31 217 23 18 12 6 0

(DR) : = (SRA) AND
IF (DRpy) =1 THEN (P) : = (P) + 2
ELSE (P) : = (P) + 1

FIX : Convert Floating to Integer

Convert floating point number in SRA to truncated integer and place
result in DR,

N SRA

| 1 §
01110.010 0 0 DR XToxxxx] O

31 27 23 18 12 6 0

(DR) : = Truncated integer (SRA)

FIR : Convert Floating to Rounded Integer

Convert floating point number in SRA to the nearest integer and place
result in DR.

LR

T , SRA
011:0/0,01 of 0 DR X0X XXX

Lo
|
¢
I

31 27 23 18 12 6 0

(DR) : = truncated integer (SRA) + 0.5

FIXD : Convert Double Precision Floating to Integer

Convert double precision floating point number in SRAD to truncated
integer and place result in DR.

SRAD
X1XXXX

5 T ¥
01,0 lo ;c 0 0 DR
] N

31 27 23 18 12 6 0
(DR) : = truncated integer (SRAD)

ND-05.003, 01

3.3.15

3.3.16

3.3.17

3-7

FIRD : Convert Double Precision Floating to Rounded Integer

Convert double precision floating point number in SRAD to nearest

integer and place result in DR

L L]

1] i !

g to t Y SRAD
01:0:0 :0 1L0".0§0 0 DR X1X XXX
31 27 23 18 12 6
(DR) : = truncated integer (SRAD) + 0.5

FLO : Convert Integer to Floating

Convert the integer number in SRA to a floating point number in DF.
The result is not rounded.

oltoro it folottlo] o DF SRA 0
SR M X0 X XXX

31 27 23 18 12 6 0

(DF) : = float (SRA)

FLOD : Convert Integer to Double Precision Floating

Convert the integer number in SRA to a double precision floating point
number in DFD. There is no need for rounding due to the word length.

T T T 171
0o | N DED
0 1101011 0‘0‘(1‘0 0 XTI X XXX SRA 0

31 27 23 18 12 6 0

(DFD) : = float (SRA)

ND-05.003. 01

3-8

3.3.18 LRO : Logical Register Operation
0 |10+ 1 {0[CA|CB| LO 0 DR SRA SRB
i . i
31 27 26 25 23 18 12 6 0

The RSC is divided in 3 fields, CA, CB and LO, If CA is set, the operand
in SRA is complemented before the logical operation is performed. CB
has the same effect on SRB.

The complementation of the operands does not affect the original contents
of SRA and SRB.

RSC= CA CB LO

0 0 0 (DR) : =0

0 0 1 (DR) : = (SRA)A (SRB)
0 0 2 (DR) : = (SRA) ¥ (SRB)
0 0 3 (DR) : = (SRA) (SRB)
0 1 0 (DR) : =0

0 1 1 (DR) : = (SRA)/ (SRB)
0 1 2 (DR) : = (SRA)V/ (SRB)
0 1 3 (DR) : = (SRA)V/ (SRB)
1 0 0 (DR) : =0

1 0 1 (DR) : = (SRA)/ (SRB)
1 0 2 (DR) : = (SRA) Y (SRB)
1 0 3 (DR) : = (SRA)V (SRB)
1 1 0 (DR) : =0

111 (DR) : = (SRA) A (SRB)
1 1 2 (DR) : = (SRA) V/(SRB)
1 1 3 (DR) : = (SRA) V/(SRB)

3.3.19 The inter-register instruction with RFC = 11 is saved for future usage.

ND-0&6.003.01

3.3.20

3.3.21

3-9

IRO : Inter-Register Arithmetic

DR

01{120}0 SC|AC]AF 0

SRA

SRB

31 27 26 256 23 18 12

AT : Arithmetical function

AF =0 (DR) : = (SRA) + (SRB)
1 (DR) : = (SRA) - (SRB)
2 (DR) : = (SRA) * (SRB)
3 (DR) : = (SRA) / (SRB)

The inter-register add and subtract may affect or be affected by a

one bit register called the Carry Bit, CB.

If SC = 1, the content of CB will be set to its proper value after the

arithmetical operation.
to the result of the arithmetical function.

If AC =1 the content of CB will be added

The carry bit may be used to simulate multiple precision arithmetic.
Using SC = 1 will have the same effect as extending the operands with

one bit containing zero.

The result register will be extended by one

bit containing one or zero, according to the arithmetical condition.

Integer multiply and divide will affect the auxiliary registers.
will contain the upper 32 bit part of the 64 bit product.

contain a 32 bit remainder after an integer divide.

In all integer arithmetic, overflow conditions may occur.

specified, an overflow condition may cause a monitor call.
occurs when the result of an arithmetical operation is in size greater

than + (223 - 1),

FRO : Floating Point Arithmetic

OR

RR will

If so
Overflow

AT 0 DF/DFD

011711011 0
i [|

SRA/SRAD.

SRAB/SRH

3D

31 27T 26 23 18

AF : Arithmetical function

AF =0 (DF/DFD) : = (SRA) + (SRB)
1 (DF/DFD) : = (SRA) - (SRB)
2 (DF/DFD) : = (SRA) * (SRB)
3 (DF/DFD) : = (SRA) / (SRB)

Cfr. Section 1.8, Floating Point Arithmetic.

12 6

0

SINGLE PRECISION : (DF), (SRA) and (SRB) : = (X 0 X X X X)
DOUBLE PRECISION : (DF), (SRA) and (SRB) : = (X1 X X X X)

ND-05.003. 01

3-10

3.3.22 IRS : Integer Register Skip

o] o] RL] A 0 DR SRA SRB

I S|

31 27 25 23 18 12 6 0

The inter-register skip is a general arithmetical instruction followed
by a relation between the result and zero.

AF : Arithmetical function

AF =0 Add
1 Subtract

RI. : Relation between result and zero

RL =0 result >0
1 result <0
2 result =0
3 result £0
(DR): = (SRA) arithmetical operation (SRB) AND

IF relation THEN (P) : = (P) + 2

ELSE (P) : = (P) + 1
Normally, DR will be affected, but if general register 0 is specified as
DR, no destination register is affected. However, the relation on the
result will still be effective.

When DR = 0 and AF =1, the IRS operation is a traditional skip.

3.3.23 FRS: Floating Register Skip

0 1{151i1 RL|AF 0 DF/DFD |SRA/SRAD| SRB/SRBD
31 27 25 23 18 12 6 0

The description of FRS is the same as for IRS, Section 3. 3. 22, except
that the arithmetic is performed on floating registers in floating point
mode.

Single precision : (DF), (SRA) and (SRB) : = (X 0 X X X X)
Double precision: (DF), (SRA) and (SRB) : = (X 1 X X X X)

Floating register skip instructions causing an underflow condition gives

zero as result, and the next instruction is selected according to this.
Additionally, the underflow flag is set.

ND-05.003. 01

4.1

4.2

4.3

4.3.1

4~-1

ARGUMENT INSTRUCTION

Introduction

Typical for the argument instruction is that one of the operands is
contained in the instruction itself; it is called the argument, A.
The other operand is contained in one of the general registers.

The argument is a 16 bit positive number. Before the specified operation
takes place, the argument is extended to a 32 bit number with the one
16 upper bits all equal to zero.

Argument

Instruction Layout

1 |AFC DR 0 ASF A
31 29 23 18 16 0
A Argument, 16 bits
AFC Argument instruction function code
DR Destination register
ASF Argument instruction sub-function code

Ingstruction Description

DLR : Direct Logical Operation

1] 0 DR 0 LF A
31 29 23 18 16 0
LF Logical Function
LF =0 (DR) : =0
1 (DR) : = (DR) v A
2 (DR) : = (DR)A A
3 (DR) : = (DR) v A

ND-05.003. 01

4.3.2

4.3.3

DAR : Direct Arithmetic Function

liol1 DR 0 AF A
31 29 23 18 16
AF Arithmetical Function
AF =0 (DR) : = A
1 (DR) : =-A (2's complement
2 (DR) : =+ A
3 (DR) : = (DR) - A

DSK : Direct Skip

1{1 |CM DR 0 RL A
31 30 29 23 18 16 0
CM Complement flag (2's complement)
RL Relation designator
RF=0 CM=0 IF (DR)= A THEN (P) : = (P) + 2 DDP
ELSE (P) : = (P) + 1
1 0 IF (R)< A THEN (P) : = (P) + 2 DDN

ELSE (P) : = (P) + 1

0 IF(DR)=ATHEN(P):= (P)+2 DDZ

ELSE (P) : = (P) + 1
0 IF (DR) + A THEN (P) : = (P) + 2
ELSE (P) : = (P) + 1

DDF

1 IF (DR)> -AR THEN (P) : = (P)+2 DSP

ELSE (P) : = (P) + 1

1 IF (DR)<-AR THEN (P) : = (P) +2 DSN

ELSE (P) : = (P) + 1

1 IF (DR) = -AR THEN (P):=(P) +2 DSZ

ELSE (P) : = (P) + 1

1 IF (DR) #-AR THEN (P) : =(P) +2 DSF

ELSE (P) : = (P) + 1

ND-05.003, 01

(92
{
—t

SUMMARY OF INSTRUCTIONS

MEMORY REFERENCE INSTRUCTIONS

o+
MNEMONIC ACTION SECTION
RTJ Return jump f *
EXC Remote execute 2
MIN Memory increment 3
CRG Skip if (R) > (Ea) 4
CRL Skip if (R) < (Ea) 5
CRE Skip if (R) = (Ea) 6
CRD Skip if (R) # (Ea) 7
JRP Jump if (R)> 0 8
JRN Jump if (R)< 0 9
JRZ Jump if (R)=0 10
JRF Jump if (R) #0 11
JPM Modify (R) and jump if (R) >0 12
JNM Modify (R) and jump if (R)< 0 13
JZM Modify (R) and jump if (R)= 0 14
JFM Modify (R) and jump if (R)# 0 15
ADD Add (Ea) to (R) 16
SUB Subtract (Ea) from (R) 17
AND Logical AND between (Ea) and (R) 18
LDR Load (R) with (Ea) 19
ADM Add (R) to (Ea) 20
XMR Exchange (Ea) and (R) 22
STR Store (R) in (Ea) 23
MPY Multiply (R) by (Ea) 24
DIV Divide (R) by (Ea) 25
LDD Load (FD) with (Ea, Ea + 1) 26
STD Store (FD) in (Ea, Ea + 1) 27
FAD Add (Ea) to (F) 28
FADD Add (Ea, Ea + 1) to (FD) 29

ND-05.003, 01

5-2

MEMORY REFERENCE INSTRUCTIONS (contd)

MNEMONIC

FSB
FSBD
FMU
FMUD
FDV
FDVD

ACTION

Subtract (Ea) from (F)
Subtract (Ea, Ea + 1) from (FD)
Multiply (F) by Ea)

Multiply (FD) by (Ea, Ea + 1)
Divide (F) by (Ea)

Divide (FD) by Ea, Ea + 1)

ND-05.003. 01

SECTION
2.4
30
31
32
33
34
35

5-3

INTER REGISTER OPERATIONS

1 SHIFT INSTRUCTIONS

MNEMONIC ACTION

SLR Left rotational shift

SRR Right rotational shift

SLA Left arithmetical shift

SRA Right arithmetical shift

SLL Left logical shift

SRL Right logical shift

SLRD Left rotational double register shift

SRRD Right rotational double register shift

SLAD Left arithmetical double reg. shift

SRAD Right arithmetical double reg. shift

SLLD Left logical double reg. shift

SRLD Right logical double reg. shift

2 MISCELLANEOUS OPERATIONS

BST Bit Set

BCM Bit Complement

BCL Bit clear

BSZ Bit skip on zero

BSO Bit skip on one

FIX Convert floating to integer

FIR Convert floating to rounded integer

FIXD Convert double precision floating to integer

FIRD Convert double precision floating to
rounded integer

FLO Convert integer to floating

FLOD Convert integer to double precision
floating

ND-05.003. 01

5-4

MNEMONIC ACTION
3 ARITHMETIC OPERATIONS
RAD Register add
RSB Register subtract
RMU Register multiply
RDV Register divide
RAT v Floating register add
RSF Floating register subtract
RMF Floating register multiply
RDF Floating register divide
RAFD Double precision floating register add
RSFD Double precision floating reg. subtract
RMFD Double precision floating reg. multiply
RDFD Double precision floating reg. divide
4 TEST AND SKIP
SGR Subtract regs. and skip if result 2 0
ASG Add regs. and skip if result =0
SLE Subtract regs. and skip if result < 0
ASL Add registers and skip if result < 0
SEQ Subtract regs. and skip if result = 0
ASE Add registers and skip if result = 0
SUE Subtract regs. and skip if result # 0
ASU Add regs. and skip if result # 0
SGF Subtract floating regs. and skip
if result 20
ASGF Add floating registers and skip
if result =0
SLF Subtract floating regs. and skip
if result £0
ASLF Add floating registers and skip
if result <0
SEF Subtract floating regs. and skip
if result =0
ASEF Add floating regs. and skip if
result =0

ND-05.003. 01

5-5

MNEMONIC ACTION SECTION
4 TEST AND SKIP (contd)
SUF Subtract floating regs. and skip if
result # 0
ASUF Add floating regs. and skip if result # 0
SGD Subtract double precision and skip if
result = 0
AGFD Add double precision and skip if result > 0
SLD Subtract double precision and skip if
result <0
ALFD Add double precision and skip if result <0
SED Subtract double precision and skip if
result =0
AEFD Add souble precision and skip fi result =0
SUD Subtract double precision and gkip if
result #0
AUFD Add double precision and skip if result #£0
5 LOGICAL OPERATIONS
RND Register AND
RNDA Register AND, use complement of (SRA)
RNDB Register AND, use complement of (SRB)
RXO Register exclusive OR
RXOA Register exclusive OR, use complement of
(SRA)
RXOB Register exclusive OR, use complement of
(SRB)
ROR Register OR
RORA Register OR, use complement of (SRA)
RORB Register OR, use complement of (SRB)
SZR Set all zeroes.

ND-05.003.01

6

MNEMONIC

XORA
ANDA
ORA
SETA
SECA
ADDA
ADCA
DDP
DDN
DDZ
DDF
DSP
DSN
DSZ
DSF

5-6

ARGUMENT INSTRUCTIONS

ACTION

Exclusive or
And
Or
Set register

Set register to complement

Add

Add complement
Skip if (DR) > ARG
Skip if (DR) < ARG
Skip if (DR) = ARG
Skip if (DR) # ARG
Skip if (DR) > -ARG
Skip if (DR) < -ARG
Skip if (DR) = -ARG
Skip if (DR) # -ARG

ND-05.003. 01

SECTION

5-7

0w

DR

SM

DR

SM

DFD

DR

DR

DR

DR

DR

DF/DFD

LO

DR

AF

DR

AF

DF/DFD

jo

RL

AF

DR

[

RL

AF

DF/DFD

R

Sl I T B - B O O O B R RV

Wl W Wl w W W W W W || W

MONITOR CODE
SRA EXT.REG. NO.
SRA SHIFT COUNT
SRAD SHIFT COUNT
SRA BITNO
SRA BITNO
SRA BITNO
SRA BITNO
SRA/SRAD 000000
SRA 000000
SRA SRB
SRA SRB
SRA /SRAD SRB/SKBD
SRA SRB
SRA/SRAD | SKB/SRBD
D
D
D
D
D
D
D
D
D
D
D

W W | W W | D WY

ND-05.003. 01

STOP
{monitor call)
RIO

SHR

SHD
BST,BCM
BCL

BSZ

BSO

FIX, RIR
FIXD, FIRD
FLO,FLOD
LRO

Not used
IRO

FRO

IRS

FRS

RTJ

EXC

MIN

CRG

CRL

CRE

CRD

JRP

JRN

JRZ

JRF

31

30
29
28

27

26
25

24
23
22
21

20

19
18

(%]
i
[0 2]

17
16
15
14
13

[a]
i

OO0~ H NN O
— -

[

<

[ene]

JPM
JNM
JZM

JEM

ADD
SUB

AND

o= I = B = B o B B~ B - - B b~ B -~ B = v B I =v B - B |- B B

LDR

ADM

Not used
XMR

STR

MPY

DIV

LDD

STD
FAD/FADD

FSB/FSBD

ST T T B B T B T B I R S o T I T B B R B N P

o= Ao~ A oo B v e B I v v I O« o B v > v I v« B o« B N v« B O o < H v I B e < B o« S o« B B < I K v

|||V |0 |U || |Y|U U U U U U | | b |lg

FMU/FMUD

>

w

w)

28

00

DR

LF

DR

AF

DR

RL

ND-05.003. 01

FDV/FDVD

Ind. addr.
word

DLR

DAR
DSK

APPENDIX A

ROUNDING RULES

for floating addition, floating subtraction and rounded convert to integer
in NORD-50,

The philosophy with the rounding is to get a result that is as correct as
possible from the information contained in the operands.

Instructions that result in floating add or subtract, either memory
reference instructions, inter register instructions or floating register
skip tests, are divided into two groups, one that results in a physical
addition and one that results in a physical subtraction. The convert

instruction will be treated separately. Note that negative integers are
in 2's complement,

ADDITION

The result of a physical addition is fairly easy to round. If the most
significant bit that is shifted out from the mantissa is a one, one is
added in the least significant bit in the mantissa.

To explain this more clearly, I will give some examples with a floating
number containing a 4 bit mantissa.

AlBCDEFG

The mantissa bits of a normalized number are B,C, D and E, and if it

is not zero, B will be a 1. In NORD-50 however, this bit is masked away
in the operands and result, but is used by the floating arithmetic. Zero
is represented by all exponent bits equal 0, In this way, one bit is
,gained", but zero-tests are slightly more complex; and there is no way
of telling that a number is not normalized.,

If two floating operands are added in NORD-50, it is done in the following
way.

1) The exponent part of the numbers is compared, and the
mantissa of the operand with the least exponent is shifted the same number
of places to the right as the exponent difference indicates. Let operand M
have exponent 5 and operand N have exponent 2, then the difference is 3.
The example after shifting, before addition will then be:

BMoMpM
PLUS O O N_IN.N

B"C''p

SUM PAt PBPCPDPE }PFPG

Note that only two of the shifted out bits are taken care of. One is enough
for addition and convert instruction, and two is sufficient for subtraction.

ND-05.003, 01

2) The operands are added and the not rounded sum P is made.
In the partial sum P, the most significant 1 in the mantissa will be either
Pp or Pa. Ifitis P,, the mantissa must be shifted one place to the
right, and a 1 is added in position P, before shifting to generate a carry
into Ppy and thus get a rounded answer if Pgp is al. If Pp is the most
significant 1, N¢ (Py) is added to Py, to make a rounded answer.

3) The next step is to add 1 in the Pg position if either P, or
N is 1
C .

A B PcPp i

Sl S8 5¢ Sp %

4 The mantissa for the sum S is then selected as Spg, Scs 8D
and Sg if Sp =0, or as Sps SBs S¢c and Sp ifSy=1. 1IfSp =1, one
is added to the exponent.

SUBTRACTION

First of all, let us see how many of the shifted out bits we have to take
care of to maintain the amount of information that the mantissa can hold,
or take care of the information contained in the operands.

If the exponents for the operands are the same, or the difference between
them is 1, none or one bit is shifted out, and the only thing we have to do

is to shift that bit in again or round the result due to that bit if no shift

is necessary after the subtraction. If the difference between the exponents
is 2 or more, none or one left shift can occur to normalize the mantissa
after the subtraction. If no leftshift is necessary, the last shifted out bit
determines how to round. If one leftshift is necessary to necessary to nor-
malize the result, the second last shifted out bit determines how to round
when the subtraction includes the two last ghifted out bits, and the result in
the last shifted out bit position is shifted in again.

Let us look at this more closely. We have the example with mantissa bits
B, C, Dand E.

FCDMFG

and the solution in bit E corresponds to the distance between N and N+1
in the next figure.

N M N-+1

.

ND-05. 003. 01

Now, if the least operand is shfited a maximum of one place to the right
before subtraction, we cannot give the answer with a better solution than
corresponding to the difference between N and M, where M is the mid-

point between N and N+1, because the operands do not give more information.

In the other case where the least operand is shifted 2 or more places to

the right, we know that the maximum number of leftshift, after subtraction,
is one, which gives us the maximum solution corresponding to the distance
between N and M, and if the mantissa is not shifted after subtraction,

the maximum solution corresponds to the distance between N and N+1,

As the arithmetic uses the two last shifted out bits, we can look at a
figure

N N+1
P M Q
Last shifted out bit 1 0
2 last shifted out bit 1 0 1 0
Answer, mantissa bits N N N N+1
before rounding &normalization)
Answer, the 2 extra bits 01 10 11 00

First of all, let us look at the point M, If all the shifted out bits but

the last are zero, the subtraction should give us a result equal to M.

But now, if no leftshifts are done after the subtraction, we have no
means to give the answer M, but have to give either N or N+1 as the
result. The distance from N to M equals the distance from M to N+1

so the amount of information lost is just the same whichever we choose.
As already mentioned, only the two last shifted out bits are taken care of.
If now, one or more of the less significant shifted out bits is 1, which
means that the exact result should lie in the region between P and M, N
world be a more correct answer than N +1. Therefore, if we get a
result that seems to be M, but this has to be rounded, the value N is chosen.

To go further on, the same philosophy is used for the case where one left-
shift takes place after subtraction, Results in the region N and including

P are rounded to N, from P, and including Q gives M as the result, and the
rest from Q to N+1 gives N+1 as the result.

CONVERT TO INTEGER

If a convert to integer instruction is specified with rounding, will the result
be rounded awat from 0 when the last shifted out bit is 1. 3.5 gives 4 and
-3.5 gives -4,

ND-05.003, 01

FLOATING OVERFLOW

Floating overflow may be the result of a physical addition. The overflow
flag is set, and the result will be the greatest positive or negative number
dependent on the sign of the operands. All bits except the sign bit, are
forced to one.

FLOATING UNDERFLOW

Floating underflow may be the result if a small number is subtracted
from another small number. The result can be so small that it is
impossible to represent it by a NORD-50 floating word. In this case,
the underflow flag is set, and the result is set to zero.

INTEGER OVERFLOW

Integer overflow from the floating arithmetic may be the result of a
convert to integer instruction. The overflow flag is set, and the re-
sult will be the greatest positive or negative integer.

ND-05.003.01

§§3- 533 323333§3
H 353:.53 4+ St § A/S NORSK DATA-ELEKTRONIKK
::i.: 3; ® g Lorenveien 57, Oslo 5 - TIf. 21 73 71
28 333382
0 000 00 []

COMMENT AND EVALUATION SHEET

NORD-50 Reference Manual
February 1976

Publ. No. ND-05.003. 01

In order for this manual to develop to the point where it best
suits your needs, we must have your comments, corrections,
suggestions for additions, etc. Please write down your comments

on this pre-addressed form and post it. Please be specific
wherever possible.

FROM:

— we make bits for the future

NORSK DATA A.S BOX 4 LINDEBERG GARD OSLO 10 NORWAY PHONE: 39 16 01 TELEX: 18661

