
”w...

J;

a

_
NORD
COMPUTER SYSTEMS

ASSEMBLER

for

NORD-5

.EApril 1972
‘

ASSEMBLER

for

NORD-S

g'April 1972

méuub‘F‘ H

i-s

P—LI—D-l-L

HH-

1-

COM

on

NNN

NH

r-P-ODNF-

zoooqcnonhwmv—L
H O

NNNMNNNNMNNNNNNNNN

NP“

I—k p—L

I-‘P-‘P-‘i—‘D—‘D—‘I—L (IDKIO'JUIPPWN

0190010»

CONTENTS
+++

+

Page

GENERAL INFORMATION 1—1

Introduction 1—1
Language Characteristics 1—1

Definition 1—1
Symbols used 1—2
Types of Statements 1 —4

Language Environment 1 -4

LA NGUAGE S TA TEME NTS

Machine oriented Statements

Symbolic Formats and Object Translations
Memory Reference Instructions
Register Operations
Argument Instructions I

I

MNHH

p—L

i—A

I(.0Process oriented Statements

Symbolic Format
Available Directive Instructions

Assumed Base Register
Reserve Data Block
Clear
Set Common Pointer
Conditional Assembly
Program End
Equivalence
External Reference
Specify formatted Data Fields
Generate
Global Labels
Literal Orgin
Program Name
Assembly Options
Program Start
Set Program Pointer
Program Entry Point
Print Cross Reference Table

I

l

I

I

viii-[>960

0009

I

Hummer:

to

ooooooooqqq

CO

Definition of Data

General Constant
Floating Point Constant
String Constant
Address Constant
Formatted Data NNNNN

N

MNMNNNNNNNNNNNNNNN

NNNNNNNNN

l

mmmmmmm

.I./‘N__-.,-

._I

_.

.I.»_...

Page

2. 4 Macro Extensions 2-11

[—L N I 1—: I-*~Defining a Macro
.2 Calling a MacroMN rP-rP- [\D I H DO

IHUSING THE LANGUAGE

How to write a Program
I

I

)—L

h—L

Source Program Format

The Label Field
The Opcode Field
The Operand Field
The Comments Field

How to prepare for Assembly
Assembly Output

I—ll-b-I-LH

r—s

I

[owl-s»-I-PCOMI—L

I

I

0300

I r?-
C»:The Assembly Listing

Diagnostic Messages

Programmer Errors
2 System Errors(.000

com

0300

03006003

(.0

CA3

02

0302

0300

GOOD

wwww

00

CO

CO

I

0000

WW

DOM

I-‘I-‘I-hl—NI—Lp—L

MN

MIA

H

JHL

:>ppendices:

SUMMARY OF INSTRUC TIONS

Memory Reference Instructions
Inter Register Operations

I

I |—L

Shift Instructions
Miscellaneous Operations
Arithmetic Operations
Test and Skip
Logical Operations
Argument Instructions

III

IP~)I>COL\DL\9NJ

NH-

NNNNNN

NH

QUIPDONH I

I I-5SUMMARY OF PSEUDO OPCODES

I I—KSAMPLE LISTI NG

BRF IN NORD-5 ASSE MBLER

General
Feed
Increase LOC Counter
Load one N—5 Word
EXT
REF
LIB
END
Set Location Counter
Load a Sequence of N—5 Words
Load one N —5 Word and relocate it

I

.Awwwwmme-HHI—s

i—s

PUPPPF’PPF’PP

U
0
w
?’?’?’?’?’?’

3”???”

uuuuuuuuuuue

o
w
>>>>>>

:>:>:>

I—Lh-coocqmmrhwm» I-‘O

1.1

1.2

1.2.1

1—1

GENERAL INFORMATION

Introduction

The NORD—5 assembler is a two—pass assembler. On the first pass
all macroes are expanded and labels are recognized and stored in the
label table together with their values. Certain pseudo opcodes that
may change the assembly address will also be serviced.

During the second pass all macroes are expanded, the actual assembly
of instructions is performed, all pseudo opcodes that will effect the
assembly address are checked, assembler commands are acted upon and
all output is done.

Language Characteristics

Definition

The NORD—5 will execute a program stored in its core memory.
Each memory location will contain information that will direct the
operation of the central processing unit or data used or generated
during the execution of the stored program.

To set up the computer to perform a particular task the programmer
may figure out the particular bit pattern required and insert it into
the memory. For a program of any appreciable size this becomes a
tedious task prone to introducing errors.

To aid the programmer in setting up his NORD-S, the current assembly
program has been made available. The assembler allows the programmer
to use easily remembered acronyms for the different tasks that the
computer may perform. Locations and registers that are used may be
given symbolic names. When this symbolic program is processed by
the assembler program, the appropriate numerical values will be

'

obtained and substituted for the symbolic program, and a binary program
is obtained. Writing his program on a symbolic form will ease the
programmers work, and the resulting program is readily modified.

This assembler is implemented as a two-pass assembler. Thus the
source program has to be processed twice. The assembler contains
tables for labels, macro prototype definitions , opcodes and pseudo
opcodes. During the first pass the following takes place: All labels
are picked up and saved in the label table together with their values.
Each record is checked to see if it contains a pseudo opcode. If
certain pseudo opcodes like ORG and B88 are detected, the current _
assembler address is updated. If the EQU pseudo opcode is used to _
define a label, all labels in the argument must have been defined in a
previous record.

Each pass is terminated by the END pseudo opcode. If labels are
defined as global labels (GLO) , external references (EXT) or as being
common area references, the appropriate flag bits are set in the
label table.

1.2.2

Each record is checked to see if it contains a macro call, as all
macroes have to be expanded during pass one.

During the second pass the following takes place: Each record is
checked to see if it contains a pseudo opcode. If not, opcodes are
checked for. If no legal opcode is found, a check is made to see if
the record contains a macro call. Due to this search sequence of
the tables, a mnemonic appearing in the opcode or pseudo opcode
tables must not be used as a macro name. If a macro call was
detected, a switch is set to "a macro to be expanded" and call
sequence parameters are saved. If a pseudo opcode is detected,
similar action as in pass one is taken. If an opcode is detected, its
numeric value is obtained from the opcode table, arguments are
evaluated and the numeric instruction is assembled.

If requested, a listing and binary data are output to the assigned files.

Symbols used

An argument may contain a constant, a symbolic label or an
arithmetic combination of any number of these. Several special
characters are used to identify constants and arithmetic operations.
Special characters are used to specify constants as follows.

Octal number. A number preceded by an apostroph (') will be
treated as an octal number by the assembler.

Decimal number. Any number not preceded by a special character
will be treated as a decimal number.

ASCII character. A character preceded by a # will be treated as
its 7 bits ASCII value.

The format of labels has been described in Section 3.11. The values
of all labels have been determined and saved in the labelltable during
pass one. When the assembler is evaluating an argument, it will
obtain the value of labels from the label table. Constants will be
evaluated by the appropriate subroutines. The values thus obtained
may be combined by using the following arithmetic operators (+) , (—),
(at) or (/). By using these operators integer arithmetic may be
performed as follows.

Addition. A (+) sign will add what is on the left of the (+) sign to the
first entry to the right of the (+) sign.

Subtraction. The entry to the right of the (—) sign will be subtracted
from what is one the left of the (~) sign.

Multiplication. A (+6) Sign will multiply what is on the left of the ()6)
sign by the first entry to the right of the (96) sign.

Division. A (/) sign will divide what is on the left of the (/) Sign
by the first entry to the right of the (/) sign.

Unary (+) and (—) are allowed.

It should be noted that the address arithmetic works from left to
right. This is illustrated in the following examples:

2 + 3 96 4 = 20

2 as 3 + 4 = 10

Now constants and labels may be used in an argument when the above
rules for address arithmetic are observed. The following gives
examples of how to use the address arithmetic.

LABEL + 5

'10 * LABT + AB

LABEL * 2/3 + 5
etc.

The fact that the integer arithmetic works from left to right may often
be used to great advantage. If it should be desired to perform address
arithmetic requiring parenthesis are as in F = (A as B) + (C $6 D) this may
be done as follows:

E EQU C ’6 D

F EQU A x B+E

Current location. The (*6) sign will be interpreted as current location
when it is the first entry in an argument and when immediately
followed by (+), (—), (r) or (/).

Literals. A literal is specified by using the (2) sign. Each time a
literal is specified in a memory reference instruction, a new location
containing the constant is generated. This constant is specified as if
using the GCN pseudo opcode (see Section 2. 3). The address field of
the memory reference instruction will refer to this new location.

To specify a literal, the (2) sign should immediately precede the
literal. The literal may contain a constant, a symbolic label or a
combination of these.

Examples ,

To load 10 into register 3:

LDR 3, =10

To load register 3 with the address of ENTRY:

LDR 3, =ENTRY

Note however: No relocating of ENTRY!

HW‘TI

1.

1.

2.3

3

1-4

The locations containing the literal constants will appear after the
first LOR pseudo opcode. If a program contains more than one LOR,
the constants appearing after a LOR will only be those requested since
the last LOR.

glypes of Statements

When writing an assembly program , the programmer has the choice of
three major types of statements,

Machine oriented statements

Process oriented statements

Data definition statements

A machine oriented statement will normally occupy one location in
the object program. The contents of this location will direct the NORD—S
to perform one specific task when the assembly program is being
executed. The task may be specified by any of the instructions (opcodes)
listed in Appendix A. A machine oriented statement is specified by an
opcode followed by no more than five arguments depending On the
instruction.

A process oriented statement is used to give the assembler information
concerning the assembly. Pseudo opcodes may give the start of a
program (ORG), end of program (END), room for data storage (BSS)
etc. It is seen that pseudo opcodes do not generate any data that become
part of object program. But a process oriented statement may determine
the load or assembly location of a machine oriented statement and its
actual assembled value. A process oriented statement is specified by
a pseudo opcode followed by one or more arguments. A macro call
directs the assembler to fetch one or more statements to be inserted
after the macro call.

A data definition statement is used to introduce data into the assembly
program. Examples of data are decimal constants, floating point
constants and alphanumeric data. The data defined may require one or
more locations of core storage. Data is introduced by a pseudo opcode
followed by one operand giving the data to be introduced.

The above statements are described in detail in Section 2.

Language Environment

The assembler is written in the NORD—i assembly language. Thus
it must be executed on a NORD—i. The assembler is a part of the
NORD-OPS operating system. Thus it must initially be called through
the operating system. Once an assembly is started, all input and output
is through assigned files.

2.1

2.1.1

2.1.2

2-1

LANGUAGE STATEMENTS

Machine oriented Statements

The NORD—5 will accept the two following major types of executable
instructions ,

Memory Reference Statements

Register Instructions .

Symbolic Formats and Object Translations

All machine instructions are written on symbolic form by the
programmer and translated to the machine instruction format by the
assembler.

Generally the programmer will specify:

1) An operation to be performed,

2) one or more registers to be operated upon, and

3) further specification of operation.

The operation in i) is given as the operation code (opcode). Examples
are add and shift operations. A summary of all opcodes may be found
in Appendix A. Operations in 2) and 3) are given as operands. There
may be from one to five operands depending on the operation to be
performed. Operands are separated by a comma (,). The opcode is
separated from operands by one or more blanks as in the following
example:

0130 0P1, 0P2, 0P3

Memory Reference Instructions

A memory reference instruction is specified by the following general
statement:

OPC R,D,B,X,I

The 0pcode is given as OPC and may be any of the memory reference
opcodes given in Appendix A.

The register to be operated upon is given as R, and may be any of
the 64 registers available.

The memory location it is desired to reference is given as D.

The remaining three parameters are not necessarily required. Thus
a memory reference instruction may contain only OPC, R and D. If
one of the remaining parameters are required, any preceding parameter
has to be specified. Thus if it is desired to specify X register, a B
register must also be specified. However, if (, ,) is used, the assumed
base register is inserted for B and index register 0 for X.

2. 1.3

If a base register is required it is specified by B. As base register
may be used any of the 15 base registers available. Each time a
memory reference instruction is specified, an assumed base register
is inserted into the machine instruction being assembled, unless a base
register has been specified by the programmer. The assumed base
register is set to zero at the start of each assembly pass and may be
changed by the BAS pseudo opcode.

If it is desired to use an index register for address modification, any
of the 15 index registers may be specified in the X position.

If it is desired to specify an indirect operation, I should be specified
as a non-zero value.

The values substituted for R, D, B, X andI may be any decimal or
octal constants, label or a valid arithmetic combination of constants
and labels. Literals may be used in the D field.

Register Operations

A register operation is specified by the following general statement:

OPC DR,SR,B

The opcode is given as OPC and may be any of the register operations
given in Appendix A.

The register to be operated upon is given as DR and may be any of
the 64 available registers.

The source register is given as SR, and may be any of the 64 available
registers. A source register is not required for the SZR and SON
opcodes.

Parameter B will contain information depending on the opcode
according to the following. table

Operation B field contents

Register I/O External register contents
Shift Shift count

Bit Bit number

Logical register Second source register

Register Second source register

Skip Second source register

2.1.4

2.2

2.2.1

2.2.2

2.2.2.1

2-3

Argument Instructions

An argument instruction is specified by the following general
statement:

OPC R,A

The opcode is given as OPC may be any of the argument instructions
specified in Appendix A.

The register to be operated upon is given as R, and may be any of
the 64 available registers.

The argument is given as A. The size of the argument is limited to
16 bits. The argument may be a constant, label or any valid arithmetic
combination of these.

Process oriented Statements

A process oriented statement will give a specific directive instruction
to the assembler. Thus the information conveyed will be acted upon
by the assembler at assembly time and used to control the assembly
process. Process oriented statements may be used to specify that a
binary load tape is desired, the next statement should be listed on the
top of the next page, the end of the assembly has been reached, etc.

Symbolic Format

A process oriented statement will be of the form:

POC A,B,C

where P00 is a pseudo opcode specifying the directive instruction.
The pseudo opcode will normally contain three alphabetic characters.
The pseudo opcode is followed by one or more arguments. Each
argument will normally be separated by a comma. An argument may
be any valid arithmetic combination.

Available Directive Instructions

Assumed Base Register

One or more assumed base registers may be specified as ,

BAS LABEL,B

where LABEL is a label appearing in the source program and B
specifies a base register. B may be a numeric value, symbolic
reference or any valid arithmetic combination of numeric values
and references which will specify any of the 15 available base
registers.

2.2.2.2

2.2.2.3

2.2.2.4

2-4

A source program may contain several BAS pseudo opcodes associating
base registers to several entry labels.

When a memory reference instruction or address constant (ACN) is
being assembled , the evaluated address will be compared to the value
given to labels referenced by BAS pseudo opcodes , and the one giving
the smallest displacement from the address referenced is selected.
Next the base register associated with this label is inserted into the
instruction or constant being assembled.

A maximum of 8 BAS pseudo opcodes may be specified in a program.
If more than 8 BAS pseudo opcodes are specified, the first assumed
base register specified will be replaced by the new one, etc. Thus the
list for storing assumed base registers are of a circular nature.

Reserve Data Block

A part of memory may be reserved as

BSS A

where the parameter A gives the number of words to be reserved.
A may be any valid arithmetic expression giving a positive number
when evaluated by the assembler. A negative B88 is not valid and
will not reserve any room. The value of a BSS will be listed in column
2 of the assembly listing. If a label is specified at the same time as
the B88 the label will be giving the value of the location of the first
storage word reserved by the B88.

Clear

The pseudo 0pcode CLR will clear local labels, global labels and
macro prototype tables. This pseudo 0pcode should be inserted as the
first instruction in an assembly that does not require any information
left over from a previous assembly.

Set C ommon Pointer

The pseudo COM sets a pointer to the program counter for the common
area. Thus, each time the assembler modifies its program counter
(assembly address) the program counter for the common area will be
updated. All labels defined after a COM pseudo 0pcode will be flagged
as being common labels in the label table. This is reset by the PEG
pseudo 0pcode.

2.2.2.5

2.2.2.6

2.2.2.7

C onditional As sembly

Conditional assembly may be specified by using the following pair
of pseudo opcodes

SCA A,B

ECA

The SCA pseudo opcode gives the start of the conditional assembly,
and ECA the end of the conditional assembly. If the two parameters
A and B are not equal, the source statements appearing between the
SCA and ECA statements will be assembled. If A and B are equal,
the source statements between SCA and ECA will be listed as comments
in the object listing. The comparison between the two parameters is
arithmetic. The parameters A and B may be any valid arithmetic
expression. Conditional assemblies may be nested as

SCA A,B
' a

SCA C,D
' b

ECA
' 0

BOA

Depending on the parameters A,B,C and D sections a,c or b or
a,b,c may be assembled. Nesting rules are similar to FORTRAN
DO statement nesting rules.

Program End

The end of a program is given by the pseudo opcode END. The END
pseudo opcode will terminate assembly pass 1 and 2. When END is
read at the end of pass 2, all local labels will be erased. Global
labels will survive.

Equivalence

A label may be given a specific value as in

AEQUB

- B may be any valid arithmetic expression. The assembler will
evaluate B and assign this value to A. The value assigned to A. will
be listed in column 2 of the assembly listing.

2.2.2.8

2.2.2.9

2.2.2.10

2.2.2.11

2-6

External Reference

The loader may be given information about external references by
using the EXT pseudo 0pcode as

EXT A,B,C

A,B,C are external labels that the current program wants to
reference. Each time a reference is made to the label A in the program
being assembled, information about this is made a part of the binary
output. This information is thus made available to the loader which
will update the locations in question as soon as information about the
label is made available to the loader.

Specify formatted Data Fields

The FORM pseudo 0pcode is used to specify data fields for formatted
data. This pseudo 0pcode is described under FDAT in Section 2. 3.

Generate

If it is desired to repeat or generate a source statement several
times , this may be done

GEN A

Then the next source statement will be repeated A times. A may be
any valid arithmetic statement giving a positive value when evaluated
by the assembler.

If A is zero or negative, the next source statement will appear once.
Any 0pcode, pseudo 0pcode or macro may be generated with the
exception of a GEN pseudo 0pcode, a floating point constant or a string
constant. However, floating point and string constants may appear
inside a macro that is GENed. If a label appears on the same line as
the GEN pseudo 0pcode, it will be assigned the value of the location
given to the first of the GENed statements.

Global Labels

Labels may be declared to be global as

GLO A,B,C

A,B and C are labels defined in the program. As many labels as can
be accomodated in a 80 column card image may be included following
the GLO pseudo 0pcode.

2.2.2.12

2.2.2.13

2.2.2.14

Literal Orgin

If any literals have been used in the program, one or more locations
have to be generated. If a LOR pseudo opcode is inserted into the
program, all literals up to that point will be inserted immediately
following the LOR pseudo opcode.

Program Name

The name of a program may be saved as part of the object load
module by using the following pseudo opcode,

MAIN A

A is a label defined in the program. This label and the value assigned
to it will be saved in the load module.

Assembly Options

Assembly options are specified as,

OPT A,B,C,D,E,F,G

where
A = 1 selects no listing

B = 1 selects listing of errors only

C = 1 selects binary output

D selects FDN for source program

E selects FDN for listing of assembly

F selects FDN for binary output

G selects FDN for intermediate storage

Parameters A,B and C must be 0 or 1 or a symbolic expression
giving that value when evaluated. Trailing parameters may be omitted.
Thus if it is desired to select binary output, only parameters A,B and
C have to be specified. If a file device should not be changed, its
parameter may be set equal to zero.

OPT 0,0,0,27

OPT 0,0,1,0,47

After the two above pseudo opcodes have been assembled, the source
program is read from file No. 27 and the assembly listing will be
saved on file No. 47. File device numbers should not be changed
during one assembly. Options should be selected as early as possible
in the assembly.

2.2.2.15

2.2.2.16

2.2.2.17

2.2.2.18

2-8

Program Start

The start address of a program is given as,

ORG A

where the parameter A gives the start location of the program. A may
be any valid arithmetic expression. If one of the parameters in A is
undefined , it will be assumed to be zero for the purpose of computing
the starting address. If the ORG pseudo opcode has been omitted, the
start address is assumed to be zero.

Set Program Pointer

The pseudo opcode PRG will set a pointer to the program counter for
the program being assembled. Thus, each time the assembler modifies
its program counter (assembly address) the program counter for the
program being assembled will be updated. Also see the COM pseudo
opcode.

Program Entry Point

The loader may be given information about entry points by using the
REF pseudo opcode as,

REF A,B,C

A,B,C are labels defined in the program. As many labels as can be in
a 80 column card may be included following REF pseudo opcode. Each
label and the value assigned to it will be saved as part of the object
load module. This information will be picked up and stored by the
loader which will use the information to link programs.

Print Cross Reference Table

If the XRE pseudo opcode is made part of a program, a cross reference
table will be printed out at the end of the assembly. All labels, their
assigned value and all locations where the label is referenced will be
printed out. The labels will appear in alphabetical order. Symbols
defined inside macroes will not be listed. Only references made sub—
sequent to the XRE pseudo opcodes will appear in the listing.

2.

2.

3

3.1

2.3.2

2. 3.3

2—9

Definition of Data

When it is desirable to insert a constant into a given location, this
is achieved by using a pseudo opcode. This pseudo opcode will
direct the assembler to interpret its argument as a constant to be
converted and included as part of the object program. The pseudo
opcode itself specifies the type of constant for the assembler. The
following data definition statements are available.

General Constant

A general constant is specified by the following statement,

GCN A

The assembler will evaluate the operand (A) as a single precision
value. The operand may be any combination of numeric values,
labels and arithmetic operators as described in Section 1.2.2.

Floating Point Constant

A floating point constant is specified by the following statement,

FCN A

The assembler will evaluate the operand (A) as a floating point
constant. The operand should be specified as in the FORTRAN E or
F format statement. The mantissa and exponent may contain any
number of characters consistent with the accuracy of the NORD—5
floating point format.

String Constant

A string constant is specified by the following statement,

SCN ‘STRING'

The string constant is found between the two apostrophs ('). The
string may contain any character except apostroph. The characters
in the string will be packed four to a word with the first character
in the most significant position in the data word. If only part of the
last word is required for storing characters, the unused part will be
filled with zeroes. Only the characters between the apostrophs will
be stored, not the apostrophs. The characters are stored without
parity. The maximum number of characters is only limited by the
80 character source record length.

2.3.4

2.3.5

2—10

Address Constant

An address constant is specified by the following statements ,

ACN LABEL,B,X,I

The assembler will evaluate the operand LABEL as a single
precision value. The loader will add the program base to the
value to get an absolute address.

B,X and I specify base, index and indirect modification of the
address constant.

Thus the address will be relocated at load time, but otherwise
similar to a memory reference instruction with the destination
register omitted.

Formatted Data

It is possible to insert data into selected parts of a word by using
the FORM and FDAT pseudo opcodes. The FORM pseudo opcode will
divide a word into as many as 64 subfields. The FDAT pseudo opcode
will be used to insert data according to the specification given by
the last FORM pseudo opcode. The FORM pseudo opcode may be
used as in

FORM A,B,C

where only three fields are specified. Their lengths are A,B and C
respectively. We may select actual numbers for the field lengths

FORM 10, 10,11, 7

where the word is divided into four fields.

The following FDAT will specify data according to the format given
by the last FORM,

FDAT R+10, LABEL *3, 7, '10

When the assembler is evaluating the data given by a FDAT pseudo
opcode, it will go through the following steps.

The data that is to go into each field is evaluated separately as a
32 bit constant.

The absolute value of the constant is checked to see if it will fit in
its field. This may result in an error condition (operand flag).

2.4

2.4.1

2-11

Macro Extensions

In its simplest form a macro is an abbreviation for a sequence cf
instructions.

Often a sequence of instructions is to be repeated several times.
It is then desirable to form abbreviations, for example we would
like to "attach" a name to the sequence of instructions and use the
name wherever we want the instruction sequence to occur. We
attach the name to the sequence by means of a macro prototype
definition.

Defining a Macro

A macro is defined as a macro prototype. This macro may then
later be inserted into the program sequence one or more times by
using a macro call. The macro prototype may contain any form of
coding. It may contain executable instructions, assembler directive
statements, macro calls and data definitions. This is subject to a
few exceptions that will be listed below. It is noted that a prototype
should not contain another prototype definition.

The prototype is stored in a separate table during the assembly. Thus
the programmer should attempt to write the prototype as compact as
possible in order to conserve storage space. Thus labels should be
kept short and comments avoided.

The start of a macro prototype definition is specified by the MACR
pseudo opcode, and the end of the definition by the EMAC pseudo
opcode. There should be a label associated with the MACR pseudo
opcode. This label specifies the name of the prototype. The macro
name is given as one to five alphanumeric characters. A macro name
should not be the same as one of the opcodes or pseudo opcodes found
in Appendix A og B.

The MACR pseudo opcodemay have one or more parameters. These
parameters specify which labels the prototype should fetch from the
call sequence. There are no label or argument associated with the
EMAC pseudo opcode. Three types of labels may be referenced inside
a macro prototype;

1) Labels defined external to the prototype except internal
labels of another prototype.

2) Labels internal to the macro prototype.

3) Labels given as a parameter in the macro call sequence.
If a label is referenced in the prototype and the same label
appears as a MACR parameter, this label will be treated
as a call sequence parameter. When the macro is called,
the parameter in the corresponding location in the call
sequence will be substituted for the label.
This is illustrated in the following example,

2-12

ARNA MACR BAKER
LDR 5 , ABLE
MPY 5 , SBAKER
STR 5 , CHARLY
RTJ 0 , 0 , 3

CHARLY GCN 0

EMAC

This macro prototype defines a macro called ARNA.
The external label ABLE is referenced. When the macro
is called, one parameter will be expected in the call sequence.
This parameter will be substituted for BAKER. The internal
label CHARLY is defined. Although the macro may be called
several times , the internal label will not become multiply
defined.

Regular labels may also be defined in a macro prototype.
This would however, defy the purpose of the macro as the
macro may be called only once. But it would be appropriate
to define an entire program as a macro prototype. This
prototype and a single call to it would then be read during
pass one of an assembly. During the second pass only the
macro call should be read. This way the source would be
read only once. The macro prototype must appear in the
source before it is being called the first time. The prototype
is saved during pass one. If the prototype is read during
pass two, it will be treated as a comment.

When defining a macro prototype the programmer should be aware of
the following,

1)

2)

3)

4)

6)

A macro may contain a call to iself or a call to a second
macro that will call the first macro. This recursivity is
limited to a level of 10.

A macro prototype should not be placed within another
macro prototype.

A macro is global.

A prototype should not contain the GEN pseudo opcode if
the macro is going to be GENed.

A maximum of 100 internal labels may be defined in any
prototype.

The maximum number of prototypes that may be defined
is 100. This is an assembly parameter that may be changed
by reassembly.

2.4.2

2-13

7) A macro name should not be an opcode or pseudo opcode.

8) All prototypes should be defined before any label is defined.

Calling a Macro

A previously defined macro prototype may be called by using a macro
call. This will cause the macro to be inserted after the macro call.
The macro specified in 2.4.1 may be called as,

ARNA DOG

Here the macro is called by placing the macro name (ARNA) in the
opcode field. This particular macro requires one parameter in the
call sequence (DOG). The above macro call will produce the following
coding to be inserted immediately after the macro call,

LDR 5,ABLE

MPY 5,DOG

STR Z 5,CHARLY

RTJ 0,0,3

CHARLY GCN 0

It may be noted that the parameter DOG has been inserted into the
MPY instruction.

If the macro call contains too many parameters the extra parameters
will be ignored. If the macro call contains too few parameters, blanks
will be substituted for the parameter.

No program should make more than 1156 macro calls.

3.1

3.1.1

3.1.1.1

3.1.1.2

3—1

USING THE LANGUAGE

How to write a Program

This section will contain information required by the programmer
when he is going to write his program.

Source Program Form at

The assembler is record oriented. Thus one record will be read
into a buffer at a time for processing. The source will be read from
a disc file or any other input device supported by the I/O system
being used.

The source program may consist of machine oriented statements,
directive statements to the assembler etc. One such statement will

be contained in each record.

A record contains as many as 80 characters. The record is divided
into four different fields ,

) The label field

) The 0pcode field

)
)

(DMD- The operand field

The comments fielda;

A semi-free record is utilized. The record format is the same as the
record format for the NORD—i assembly language.

The label field starts in column one.

The 0pcode field is to the right of the label field
(at least one space ahead of it).

The operand field is to the right of the 0pcode field
(at least one space ahead of it).
The comments field is to the right of the operand
field (at least two spaces ahead of it).

The Label Field

The label, if any, will have from one to six alphanumeric characters.
The first character must be alphabetic and appears in column 1. The
first space or non-alphanumeric character found after column 1
indicated the end of the label. The period character (.) is treated
like a digit.

The 0pcode Field

in this field may appear any of the opcodes or pseudo opcodes found
1n Appendix A and B and macro names.

3.1.1.3

3.1.1.4

The Oper and Field

Arguments in the operand are left justified within its field. No space
are allowed between arguments. The first space found indicates the
end of the operand.

The Comments Field

When an (96) is found in column one the whole record is treated as a
comment. If a comment is to appear on the same line as a statement
to be assembled, it may be placed after the last operand. Then there
should be at least one space separating the comment and the operand.
It is suggested that comments start in column thirty-one. A_blank
record is ignored.

Examples showing the format used are shown in Appendix C.

The result of the assembly is listed in three major octal fields where
the third field is broken down into several subfields. Field 1 contains
the address against which the source statement is assembled.

Field 2 contains the result of the assembly. Only information that
will actually be loaded into core during execution will appear in this
field. All information in this field will appear in a binary load module.
The field will never contain assembler or loader information.

The complete instruction in field 2 has been broken down and appears
in the remaining subfields. This will make it easier for the programmer
to determine which registers have been used, what locations have been
referenced etc. Three different formats may be found depending on
whether the assembled instruction is a memory reference, register or
argument instruction. The contents of the different columns are
summarized in the following table.

Field 3 4 5 6 7 8 9

Memory Contents i X B OP R D

Reference Bit No. 31 30—27 26 -23 22-18 17—12 11—0

Register Contents
'

0 R mix 0 DR SRA SRB

Bit No. 31 30~27 26-23 22~18 17—12 11—6 6—0

Argument Contents I R 0 ARG

Bit No. 31 30—29 28—23 22—18 17—16 15—0

When a memory reference instruction has been assembled, the letters
X or C may appear between fields 7 and 8. This indicates that an
external label (X) or a label defined to be in the common area (C) has
been referenced in the instruction. If both an external and a common
label have been referenced, the letter D will appear.

3.2

3.3

3.3.1

If the source statement is a pseudo opcode like ORG, BSS, EQU
or GEN the value of the argument will appear in column 3.

If the source statement is an address constant I, X, B and the

displacement will appear in sub columns 3 through 6.

How to prepare for Assembly

When the programmer is ready to assemble his program, the source
'deck‘ should contain the following,

1) ORG pseudo opcode giving the start of the program.

2) CLR pseudo opcode to clear tables if this assembly
does not require information from any previous assembly.

3) The source program.

4) END pseudo opcode giving the end of the assembly.

The source program should appear in the sequence indicated above.

Control command:

$N5ASM ('options')

where 'options' has the same format as the operand field for the
pseudo opcode OPT.

The program may be punched on paper tape or cards or be stored
on a file on a mass storage device or any other peripheral device
supported by the I/O system to be used with the assembler.

Assembly Output

The Assembly Listing

When the appropriate options are selected, the assembler will give

an assembly listing. This listing contains the result of the assembly,
information on assembly errors and a listing of the source.

An example of an assembly is given in Appendix C. Columns 1
through 40 contain several fields of octal information giving the
result of the assembly. Starting in column 45 the source program
is listed. Error flags will appear between the assembly result and
the source listing.

If any assembly errors occurred during the assembly, error flags
will appear right justified in columns 41 through 43. If a system error
occurred, the appropriate message will be listed starting in column 1.
The different error codes are explained in Section 3.3.2.

Starting in column 45 the source program is listed. The following
assembler commands will not appear in the listing, HLT, NOLS and
LIST.

3.3.2

3.3.2.1

3.3.2.2

Diagnostic Messages

When the assembler detects an error, a message to that effect will

appear in the assembly listing. Errors may be introduced due to
programmer errors or due to limitations imposed by the assembler.

Programmer Errors

When the programmer has made an error, one or more error flags
will appear as described in 3.3.1. The sample in Appendix C should
also be consulted as it shows the error flags as used for the different
instructions. The different error flags are,

Operand error

Illegal base register

Illegal destination register

Illegal opcode

Illegal index register
Label multiple defined

Label undefined

Possible errorodgx>wwo
When one of these errors except M and Q has been detected, a halt
(STOP) instruction is substituted as the result of the assembly.

System Errors

When one of the limitations of the assembler has been exceeded, a
system error will result. Then a message will appear in the assembly
listing.

System errors are as follows:

1) Label table full.

2) Macro prototype table full.

3) Too many macroes expanded.

4) Cross reference table full.

5) Too many recursive macroes called.

6) Too many macro prototypes stored.

System errors are not recoverable and the assembly will be terminated.

APPENDIX A

SUMMARY OF INSTRUC TIONS

Memory Reference Instructions

Mnemonic

RTJ

EXC

MIN

CRG

CRL

CRE

CRD

JRP

JRN
JRZ

JRF

JPM

JNM

J ZM

JFM

ADD

SUB

AND

LDR

ADM

XMR

STR

MPY

DIV

LDF

STF

FAD

FSB

FMU

FDV

A_ctio_n
Return jump

Remote execute

Memory increment

Skip if (R) >/ (Ea)

Skip if (R) < (Ea)

Skip if (R) : (Ea)

Skip if (R) ¢ (Ea)

Jump if (R) a 0

Jump if (R) < 0
Jump if (R) = 0

Jump if (R) 1: 0
Modify (R) and jump if (R) >, 0

Modify (R) and jump if (R) < 0

Modify (R) and jump if (R) = 0

Modify (R) and jump if (R) ¢ 0

Add (Ea) to (R)
Subtract (Ea) from (R)

Logical AND between (Ea) and (R)

Load (R) with (Ea)

Add (R) to (Ea)

Exchange (Ea) and (R)

Store (R) in (Ea)

Multiply (R) by (Ea)

Divide (R) by (Ea)

Load (F) with (Ea, Ea + 1)

Store (F) in (Ea, Ea + 1)

Add (Ea, Ea+ 1) to (F)

subtract (Ea, Ea + 1) from (F)

Multiply (F) by (Ea, Ea + 1)

Divide (F) by (Ea, Ea +1)

A.2

A.2.1

A.2.2

A.2.3

Inter Register Operations

Shift Instructions

Mnemonic m

SLR Left rotational shift

SRR Right rotational shift

SLA Left arithmetical shift

SRA Right arithmetical shift

SLL Left logical shift

SRL Right logical shift

SLRD Left rotational floating register shift

SRRD Right rotational floating register shift

SLAD Left arithmetical floating register shift

SRAD Right arithmetical floating register shift

SLLD Left logical floating register shift

SRLD Right logical floating register shift

Miscellaneous Operations

BST Bit set

BCL Bit clear

BSZ Bit skip on zero

BSO Bit skip on one

FIX Convert floating to integer

FLO Convert integer to floating

Arithmetic Operations

RAD

RSB

RMU

RDV

RSF

RMF

RDF

Register add

Register subtract

Register multiply

Register divide

Floating register add

Floating register subtract

Floating register multiply

Floating register divide

A.2.4 Test and Skig

Mnemonic

SGR

ASG

SLE

ASL

SEQ

ASE

SUE

ASU

SGF

ASGF

SLF

ASLF

SEF

ASEF

SUF

ASUF

Action

Subtract registers and skip if result >/

Add

Subtract

Add

Subtract

Add

Subtract

Add

1'

H

H

II

II

N

H

H

H

H

\V

OOOOOOOO

Subtract floating registers and skip if

Add
Subtr act

Add
Subtract

Add
Subtract

Add

H

H

II

VI

result

H

%

IIAA\\/

'H‘H- OOOOOOOO

A.2.5

A.2.6

A-4

Logical Operations

Mnemonic

RND

RNDA

RNDB

RXO

RXOA

RXOB

ROB

RORA

RORB

S ZR

Action

Register AND

Register AND, use complement of (SRA)

Register AND, use complement of (SRB)

Register exclusive OR

Register exclusive OR, use complement of (SRA)

Register exclusive OR, use complement of (SRB)

Register OR

Register OR, use complement of (SRA)

Register OR, use complement of (SRB)

Set all zeroes

Argument Instructions

XORA
ANDA

ORA
SE TA

SECA

ADDA

ADCA

DDP

DDN

DD Z

DDF

DSP

DSN

DS Z

DSF

Exclusive OR

AND
OR
Register set

Set register to complement
Add
Add complement

Skip if (R) >/ A
H " " (A
n n n- 2A

" " " #A
" " " >/ —A

APPENDIX B

SUMMARY OF PSEUDO OPCODES

BAS LABEL,B

The parameter B specifies a base register associated
with LABEL to be used in memory reference instructions
if a base register has not been specified.

BSS A

The parameter specifies the number of locations that
is to be reserved.

CLR
Clear label tables.

COM
Start assembling into common area.

ECA
End of conditional assembly. Regular assembly is
resumed after a previous SCA.

END
Program end. Will terminate pass one and two and
erase local labels after end of pass two.

EMAC

End of macro prototype definition.

EQU A

The label is given the value specified by the argument.

EXT A,B,C. . ..

The parameters give the name of labels that are
external to the current program.

FORM A,B,C. . ..
The parameters specify fields for later use by FDAT.

GEN A

The contents of the next source statement are repeated
the number of times given by the parameter.

GLO A,B,C. . ..
The parameters give the name of labels that are to be
declared as global labels.

..—-.__

HLT
The assembly is temporarily stopped.

LIST

If listing of assembly is specified, listing will be
resumed (see NOLS).

LOR

All literals requested after the last LOR will be
defined following LOR.

MAIN A

The parameter gives the name of the program being
assembled.

MACR A,B,C. . ..

Start macro prototype definition. The label gives the
name of the macro. The parameters give call sequence
parameters.

NOLS

The assembly will not be listed (see LIST).

OPT A,B,C,D,E.F,G /
The three first parameters give the desired assembly
options (no listing, list error only, binary output if = 1).
The four last parameters give the FDN of the files used.

ORG A

The selected program counter is set to the value given
by the parameter.

PRG

Start assembling into the program areas.

REF A,B,C. . ..

The parameters give the names of program labels that
are required as external reference points.

SCA A,B

Start conditional assembly. If the two parameters are
equal, the following source statements will not be
assembled (see ECA).

XRE
‘Save data for a cross reference table to be printed
at the end of assembly.

The following pseudo opcodes are used to specify data:

FDAT A,B,C. . . . Formatted data (see FORM)

GCN A General constant

FCN E or F Floating point constant

SCN 'STRING‘ String constant

ACN LABEL,B,X,I Address constant.

APPENDIX C

00620
00621
00622
00623
MOMS
00624
00625
00626
00627
00630
00631
00632
00633
00634
00635
00636
00637
00640
00 641
00642
00643
00644

00645

00646

HANS
MONS
NILS
OLE
TALL
TRULS

SAMPLE LISTING

00027000642
00027000643
24100000000
00001000637

00023010643
00023020642
14000010102
00020010642
24040600001
00023030644
16040000103
00001000635
00000000000
00027010643
07042010001
24100400001
00027020642
00001040624
00000000000
00000000000

00000000000

00000000000

000643 0
000624
000637
000642
000644
000000

0000000620
0 00 00 27 00 0642
0 00 00 27 00 0643
1 05 00 00 02 000000
0 00 00 01 00 0637

0 00 00 23 01 0643
0 00 00 23 02 0642
0 14 00 00 01 01 02
0 00 00 20 01 0642
1 05 00 00 01 000001
0 00 00 23 03 0644
0 16 01 00 00 01 03
0 00 00 01 00 0635
0 00 00 00 00 000000
0 00 00 27 01 0643
0 07 01 02 01 0001
1 05 00 00 02 000001
0 00 00 27 02 0642
O 00 00 01 04 0624

0000000001

0000000002

00621 000624 000635
000624 000641
000623 ,
000620 000625 000627 000640
000631
000645 000646

OPT
CLR

010)]..5/49153

* SAMPLE LISTING

MOMS

NILS

OLE
HANS
TALL

XRE
ORG
STE
STE
SETA
RTJ
REF
LDR
LDR
RA D
ADD
ADCA
LDP.
SGR
RTJ
STOP
STR
EXC
ADDA
STR
RTJ
GCH
GCM
BSS
EXT
GEH
GCH

GCJ
END

400
0: 01,15
OJHAMS
2:0
OJVILS
MOMS
1;HANS
EJOLE
1; 1; 2
1; OLE
1:1
3)TALL
0:153
01 71<+2
O
1:11.451?)
1:1:1J7
2:1
2:0LE
4': E40315
O
0
1
TRULS
2
TQULS

TRULS

n

APPENDIX D

BRF IN NORD-5 ASSEMBLER

D.1 General

H—Group means two consecutive frames.

W—Group means four consecutive frames (one N—5 word).

S—Group means eight consecutive frames and are used for
symbols only.

Now to the different control numbers:

D. 2 F e e d

Octal value : 0

Comparison with
NORD-i BRF : FEED

Consists of : <FEED>

Explanation : Ignored

D.3 Increase LOC Counter

Octal value : 1

Comparison with
NORD—i BRF : AFL

Consists of : <AFL > <H—GROUP >

Explanation : H1 + (CLC) -—> (CLC) NB! No zero fill
H 1

D4 Load one N~5 Word

Ocatal value : 2

Comparison with
NORD-i BRF : LF

Consists of : < LF> <W-GROUP >

Explanation : - If 'add flag' is OFF (see below), then
W1——>((CLC)), (CLC) +1 ——>(CLC)

— If 'add flag' is ON, then
w1 + ((CLC)) -—>((CLC)), (CLC) +1'>(CLC)
and 'add flag' is turned OFF.

may be negative

0

EXT

Octal value

Comparison with
NORD—i BRF

C onsi sts of

Explanation

Comment

REF

Octal value

Comparison with
NORD-i BRF

Consists of

Explanation

: REF

: <REF><S-GROUP>
- If SYMBOL is g defined, then add SYMBOL

to UNDEFINED symbol table with a notifi—
cation that it is used in 100. (CLC).

— If SYMBOL i_sdefined, then
— if ‘add flag' is OFF, then value

(SYMBOL) —>((CLC)) and 'add flag'
is turned ON;

- if 'add flag‘ is ON, then value
(SYMBOL)+((CLC))a((CLC))

The expression

OLE+5

where OLE is an external symbol is
output as

<REF> < S-GROUP > <LF> <W-GROUP >

Here the S-GROUP contains the symbol OLE
and the W-GROUP centains the value 5.

ENTR

: <ENTR> <S-GROUP > <H-GROUP >

. SYMBOL is entered into DEFINED SYMBOLS
TABLE with a value equal to

H1+(PB)

The UNDEFINED SYMBOL TABLE is then
scanned, and for each occurrence of SYMBOL
in this table, the following steps are performed:

— value of SYMBOL is added into location
referenced;

— the entry is erased from the US. T.

D.10

LIB

Octal value

Comparison with
NORD-i BRF

C onsi sts of

Explanation
C omment

END

Octal value

Comparison with
NORD—i BRF

C onsi sts of

Explanation

C omment

LIBR

: (LIBR) <S-GROUP> <H—GROUP >

: Identical with ENTR

LIBR denotes the entry point of a library
routine.

: END

: (END >

(CLC)—)(PB); end of loading

No checksum is provided!

Set Location Counter

Octal value

Comparison with
NORD-i BRF

Consists of

Explanation

Comment

7

: SFL

: <SFL><W-GROUP>

: Wi—a (CLC)

Not produced by the assembler, but
implemented to ease the production of
memory dumps.

Load a Sequence of N—5 Words

Octal value

Comparison with
NORD—i BRF

Consists of

Explanation

C omment

10

LNF

: <LNF> <H-GROUP>L<W'-GROUP> --- <W-GROUPL
V

Numbered by H—Group!

: Wi——> ((CLC)), (CLC)+1—>(CLC) i = 1,. . . . ,H.

See SFL above!

2"??? r1!

Load one N—5 Word and relocate it

Octal value

C ompari s on with
NORD—i BRF

Consists of

Explanation

11

LR

: <LR> <W—GROUP>

: As for LF, except W1+(Program
Base) -—>((CLC))

