
NORSK DATA UNIXT (NDIX) - ND-SOOO/ND-IOO Interface
Specification

NDIX Development Group

Norsk Data Ltd
Benham Valence

Newbury
Berkshire
England

ABSTRACT

This document describes the software interface between the ND—SOOO and the
ND—lOO processors for the purposes of the Norsk Data UNIX system implementation.

November 8, 1988



NORSK DATA UNIXT (NDIX) - ND-SOOO/ND-IOO Interface
Specification

NDIX Development Group

Norsk Data Ltd
Benham Valence

Newbury
Berkshire
England

I. Introduction

This document describes the software interface between the ND-SOOO and the ND-IOO processors for the
purposes of the Norsk Data UNIX system (NDIX) implementation. The UNIX system is implemented
using a hybrid approach in which the UNIX kernel runs in the ND-SOOO processor and communicates
with the ND-lOO front—end processor. The front-end runs a the SINTRAN III operating system which per-
forms all I/O operations on behalf of the ND-SOOO processor. The NDIX kernel and user processes run as
a single "process" in the ND-SOOO. Other SINTRAN processes may be run in the ND-SOOO when NDIX
is not running.

The basic approach adopted in the design of UNIX for the Norsk Data system is to regard the ND—lOO as
an intelligent I/O Processor which performs functions similar to those provided by 1/0 controllers of more
conventional design. The model has been extended so that the ND-IOO can be regarded as interrupting
NDIX and vectoring it into an interrupt context. This approach allows the NDIX kernel to maintain full
control over the operation of its user processes running in the ND-SOOO processor.
Under SINTRAN III, the ND-SOOO is regarded as a slave processor and the SINTRAN scheduler, which
runs in the ND-IOO, has complete control over which processes run in the main processor. The NDIX
kernel and user processes are regarded as one SINTRAN "process" within this model. SINTRAN plays
no part in the choice of NDIX user process running at any time.
NDIX requests the performance of i/o operations by means of "FE“ calls: sent to the ND-lOO. When an
1/0, or other asynchronous operation is completed within the ND-IOO, it will stop NDIX, save its context
and restart it in an interrupt context at a specific address. Interrupt contexts within NDIX will be grouped
together by software into a number of specific priority levels and while an interrupt is being handled on a
particular level no other interrupts will be allowed to occur on that, or a lower level. This mechanism,
which allows the ND-IOO to simulate a series of interrupt priority levels, is a common feature of other
architectures on which UNIX has been implemented.
Since the UNIX kernel has a number of critical regions it will be necessary for it to request that specific
levels be inhibited for a time. This will be achieved via an area in shared memory containing the current
priority level.

1 UNIX is a trademark of AT&T in the USA and other countries
:i: Documented thoroughly in the interface manual pages included in appendix 3 of this document.



ND—SOOO
, ND-lOO
i
I
I

. I
NDIX mom“? calls :I/O request

Interrupt Context Interrupt

_
_

_
-
_

_
_

_
_

_
_

_
_

—
-
—

—
-
-
—

-
—

Figure 1. The ND—SOOO/ND—IOO Interface.



2. Memory Configuration & Bootstrapping
When the ND-SOOO system is bootstrapped into operation and a NDIX kernel is loaded into the ND-

5000 memory the physical layout of the system data structures must be in a well defined state and they
must be mapped onto the logical address space of the NDIX kernel at fixed addresses. This section
defines the layout of physical memory which will be expected by NDIX, the initial logical address map of
the NDIX kernel and the initial contents of the processor registers when the NDIX kernel is entered.

2.1. Physical Memory Configuration
The host computer for the NDIX implementation consists of an ND-SOOO and an ND-lOO processor shar-
ing a common physical memory array of up to 32Mb. The hardware will be configured such that the bot-
tom of physical memory is private to the ND-lOO and is used by SINTRAN-III. All memory at ND-lOO
physical addresses above a certain physical address (PRIVATE) will be used by the ND-SOOO and will
map onto ND-SOOO physical addresses starting at 0. Normally this private memory will be two mega-
bytes, except in the case of the ND120/CX where all memory on the NDIZO card will be private.

ND-lOO physical _ ND-SOOO physical
O

2-6Mb ND—lOO .Private Memory lnaccessxble to ND~SOOO

PRIVATE 0

Shared memory(<= 32Mb) ND-SOOO Address space

X X-PRIVATE

Figure 2.1 Physical [Memory Allocation
The actual extent of the physical memory accessible to the ND-SOOO will be passed to the NDIX kernel
via the feinz't monitor call when it begins execution; this monitor call is described in appendix 3.
Except when bootstrapping the ND-SOOO, debugging or performing specific functions, described below,
which involve access to shared data structures, the ND-IOO processor will never change the contents of
the ND—SOOO physical address space allocated to NDIX. Futhermore, all addresses passed to the ND-lOO
after an feiru‘t call has been successfully executed will be ND-IOO physical addresses. It is the responsi-
bility of the ND-SOOO program to relocate ND~5000 physical addresses accordingly before they are
passed.

2.2. Physical Layout of Data Structures @ Bootime
When the NDIX kernel is being bootstrapped into the ND-SOOO processor the following data structures
will be established in the ND-SOOO physical memoryT.

T This layout is chosen to be as similar to previous versions of NDIX as possible, in an attempt to minimize NDIX kernel
and debugger changes.



-4-

0 A (possibly zero length) dynamically allocatable area of memory for use by either NDIX or other
ND—SOOO processes.

- The Physical Segment Table. Only the 2nd half of this table is used by NDIX, which should not
be used by other NDSOOO processes.

0 A (possibly zero length) dynamically allocatable area of memory for use by either NDIX or other
ND—SOOO processes.

There then follows an area of memory dedicated to NDIX, the first address beyond this area being passed
to NDIX in the feinit monitor call. If this area is not large enough to establish NDIX, then NDIX will
terminate with an FE_EXIT monitor call, indicating how much contiguous memory is required.
The layout of this area is:
0 The NDIX kernel data segment index page.
0 The NDIX kernel text segment index page.
0 The NDIX kernel stack segment index page.
0 The PST index page.
0 The NDIX Process Segment index page.
0 The NDIX kernel data segment
0 Process Segment for the 256 domains, comprising the NDIX process.
0 The NDIX kernel stack segment. The size of this segment is fixed at 8Kb.
0 The NDIX kernel text segment.
0 An area of memory to be allocated dynamically by the NDIX kernel, and mapped (dynamically)

into several segments.
There is no easy formula for sizing this contiguous area, since its size is dependant in part on the size of
the NDIX swap partitions. Therefore the size will be provided for the ND-lOO in a file;
There then follows an area of memory which may be dynamically allocated to either NDIX or other ND-
5000 processes.

There then follows an area of memory dedicated to NDIX, but whose use is shared between NDIX and
the ND-lOO. The start address of this area is passed to NDIX in the feinit monitor call. This area con-
sists of:
0 The NDIX shared data segment index page.
0 The NDIX shared data segment. The size of this segment is currently 32k.
There then follows an area of memory which may be dynamically allocated to either NDIX or other ND-
5000 processes.
The layout of the NDSOOO memory is illustrated in figure 2.2.

2.3. Loading the NDIX program

Modifications must be made to the ND-SOOO monitor to set up the necessary data structures, specified in
the previous section, in physical memory and to load a specified pair of SINTRAN-III PSEG & DSEG
files containing an absolute NDIX program image into the ND-SOOO memory.

isee§8



feim't
address

TSB etc.

PST

Data Index Page

Text Index Page

Stack Index Page

PST Index Page

PS Index Page

NDIX Data Segment

Process Segment

NDIX Stack Segment

NDIX Text Segment

Shared seg Index Page

Shared Segment
sfree

NDIX Dynamic

User Dynamic

sphys

Figure 2.2 ND—5000 Physical Memory Layout

2.3.1. Initial PST entries
The following PST entries need setting to point to the relevant page tables (all segments loaded by the
NDSOOO monitor are small enough to be mapped by a single level of page tables).

PST Segment
INDEX

0T Pageframe number of PST
4096 NDIX text
4097 NDIX data
4098 NDIX stack
4099 NDIX PST
4100 NDIX PS
4105 Shared segment



All other NDIX PST entries should be set to zero.

2.3.2.

Inall

Initial Index Page Settings
The NDIX Stack index page maps only 8Kb (4 physical pages).
The NDIX Shared segment index page maps only 32Kb.
index pages the entries for pages beyond the allocated size of the segment should be zero.

For details of the sizes of the other segments see the next section.

2.3.3. Initial Segment Loading
Each segment should be loaded starting on a page boundary.

The NDIX Text and Data segments are loaded from a pair of Sintran PSEG & DSEG files. The
size of these segments is found from the Sintran files.
The NDIX Stack segment isfour pages long, all initialized to zero.
The NDIX part of the PST is initialized as described above.
In the Process Segment all domain information table entries for domains 1-255 should be initial-
ised, by the ND-SOOO monitor to zero.
In domain zero, which describes the NDIX program itself, the value of all unused capability entries
should be set to zero, so making them invalid; the domain call information, trap handling infonna-
tion and domain characteristics fields should also all be initialised to zero. The only field which
should be set is byte 0xc8 (0310), the domain status byte. Bit zero of this byte should be set, indi—
cating that privileged instructions are allowed in the NDIX domain.
The capabilities used and their settings arei:

data
segment value meaning
0 0x9001 data segment, write permitted
1 0x9000 text segment, write permitted
2-5 0 invalid
6 0x3009 shared segment, write permitted, no~cache
7-26 0 invalid
27 0x9003 PST, write permitted
28 0x9004 Process Segment, write permitted
29 0x9002 stack (upage), write permitted
3061 0 invalid

instruction
segment value meaning
0 OxIOOO text segment
1-30 0 invalid
31 0xc000 other machine, indirect

Memory following the NDIX text segment does not need to be initialized, or indexed, but zeroing
of this memoryT may be considered advisable for secure systems.
The first 2Kb of the shared segment is a bitmap covering physical memory allocation, one bit per
page. The most significant bit in the first word corresponds to the first page in memory, the least
significant in the last word to the last page in 32Mb of memory. A bit is set for each page of
memory which may be dynamically allocated between NDIX and other NDSOOO processes and is

1- This entry is needed by the NDD( superstructure and is not usable as a valid PST entry.
1 This currently does not match reality and will require updating
1* The same consideration applies to any other memory transferred between NDIX and Sintran.



available for NDIX at startup.

If this bitmap does not indicate enough memory for NDIX user processes then NDIX will terminate
with an feexit monitor call, indicating how much allocatable memory is required.

The remainder of this segment is used for the Xmsg command and response buffers (see § 9) the IPL
record, (see § 42.1), the clock record (see § 5). and the sub-device descriptors (see § 4). This is depicted
in figure 2.3.

0

Bitmap

0x800
Xmsg Command

Buffer
0xc00

Xmsg Response
Buffer

OXIOOO IPL record
OXIMO Clock Record0x1080

Sub-Device
descriptors

(13 pages)

0x8000

Figure 2.3 Shared segment layout

2.4. NDIX Kernel Logical Address Space
The NDIX kernel text and data domains (domain 0 of the NDIX process) must be partially established
before the kernel can start running. This section outlines the initial environment, and provides the infor—
mation used above to describe the initialization of the PST and PS for NDIX.

These mappings are changed by NDIX almost immediately it starts running. Do not
assume they ever apply after booting, even if NDIX requests an immediate reboot. It is
also unsafe to assume the contents of any of the segments survive unchanged after
NDIX has started running.

2.4.1. The NDIX Text Domain
The NDIX kernel text domain logical address space is shown in figure 2.3.

0
NDIX Text

ETEXT .
(page fault)

0x8000000
(protect violation)

0xf8000000

indirect to NDIOO

Oxffffffff
Figure 2.3 The NDIX Logical Text Domain



-8-

It is this logical to physical mapping that should established by the ND-SOOO monitor/bootstrap, after it
has loaded the NDIX program into physical memory in the manner described above.
In figure 2.3 the symbolic constant ETEXT is equated with the last valid address in the NDIX kernel text
segment (rounded up to the next page boundary).
Accessing logical addresses between ETEXT and 0x7ffffff (the start of segment 1), will cause page faults.
Accessing logical addresses between 0x8000000 and 0xf7ffffff will cause a protection violation.
Specifically the logical segments of the NDIX text domain are used as follows:
logical segment 0

Mapped, onto the text segment of the NDIX program.
logical segments l-30

Marked invalid in the program capability. Accessing these segments will cause a protection viola-
tion fault.

logical segment 31
Marked indirect and mapped onto the ND-100 domain (i.e. the other machine bit is set in the capa—
bility). This segment, which starts at kernel logical address 0x98000000, is used to make monitor
calls to the ND-lOO (see below). An attempt to use an invalid monitor call number will raise an
instruction sequence error trap.

2.4.2. The NDIX Data Domain
The NDIX kernel data domain logical address space is shown in figure 2.4. It is this logical to physical
mapping that should established by the ND-SOOO monitor/bootstrap, after it has loaded the NDIX program
into physical memory in the manner described above.
In figure 2.4 the symbolic constant EDATA is equated with the last valid address in the NDIX kernel data
segment (rounded up to the next page boundary).
Accessing logical addresses between EDATA and 0x7ffffff (the start of segment 1), will cause page
faults.

Accessing logical addresses between ( ETEXT + 0x800000 ) and Oxfffffff (the start of segment 2), will
cause page faults.

Accessing logical addresses between 0x1000000 and Ox2fffffff will cause a protection violation.
Accessing logical addresses between 0x30008000 and 0x37ffffff (the start of segment 7), will cause page
faults.
Accessing logical addresses between 0x3800000 and Oxd7ffffff will cause a protection violation.
Specifically the logical segments of the NDIX data domain are used as follows:
logical segment 0

Mapped, onto the data segment of the NDIX program.
logical segment 1

Mapped, onto the text segment of the NDIX program. This allows the NDIX program to change the
contents of its text segment if required.

logical segments 2—5
Marked invalid in the data capability. Accessing these segments will cause a protection violation
fault.

logical segment 6
Mapped to the physical pages containing the No-Cache segment. The segment starts at logical
address 0x30000000 and ends at logical address 0x30007fff. Accessing logical addresses in the
range 0x30008000 to Ox37ffffff will cause a page fault.



segment
0

NDIX Data
EDATA 0

(page fault)
0x8000000

NDIX Text
ETEXT + 0x8000000 1

(page fault)
0x10000000

(protect violation) 2-5
0x30000000

No-Cache Segment
0x30008000 ' 6

(page fault)
0x38000000

(protect violation) 7-26
0xd8000000

Physical Segment Table
0xd8007fff 27

(page fault)
0xe0000000

Process Segment
0xe000ffff 28

(page fault)
0xe8000000 —

Stack (upage)
0xe8002000 29

(page fault)
0x10000000

(protect violation) 30-31
Oxffffffff

Figure 2.4 The NDIX Logical Data Domain

logical segments 7-26 _
Marked invalid in the data capability. Accessing these segments will cause a protection violation
fault.

logical segment 27
Mapped to the physical pages containing the Physical Segment Table. The PST starts at logical
address 0xd8000000 and ends at logical address 0xd8007fff. Accessing logical addresses in the
range 0xd8008000 to Oxdfffffff will cause a page fault.

logical segment 28
Mapped to the physical pages containing the Process Segment of the NDIX process. The PS starts
at logical address 0xe0000000 and ends at logical address 0xe000ffff. Accessing logical addresses
in the range 0xe0010000 to 0xe7ffffff will cause a page fault.

logical segment 29
Mapped to the four stack pages. The logical address of the start of the stack segment is
0xe8000000. Accessing logical addresses in the range 0xe8002000 to Oxefffffff will cause a page
fault.

logical segments 30 and 31



-10-

Marked invalid in their data capabilities. Accessing these segments will cause a protection viola—
tion.

2.5. Initial Register Contents
Once the NDIX program has been loaded into memory, and the memory management has been initialised
we are ready to start execution of the NDIX kernel. Execution is commenced by loading the context
block of the NDIX process with appropriate values and then starting the ND-SOOO at location 4. In gen-
eral the requirements of the NDIX kernel are similar to those of the SIN'I‘RAN-III swapper, however cer—
tain registers should be initialised as follows:

Register Value

CED 0
CAI) 0

PS NDIX Process Segment

All other registers should be set in the same manner as is currently used for loading the SINTRAN—III
swapper. The stack will subsequently be initialised by the NDIX kernel via an init instruction. The ker-
nel is started at location 4 to avoid the possibility of an address zero trap when the kernel is executed.



-11-

3. Inter-Processor Monitor Calls

The basic structure of the ND‘100/NDIX interface provides for an interaction based on monitor calls with
data passed to and from NDIX via shared memory regions. The ND-lOO has the power to stop, start and
interrogate the ND-500(0) processor.
Programs running in the ND-500(0) can make monitor calls to other domains in the same machine, or to
the ND-IOO, via CALL or CALLG instructions with a subroutine entrypoint which lies in an indirect seg-
ment Within the NDIX environment system calls from user applications will be implemented via inter-
domain monitor calls. The NDIX kernel itself uses monitor calls to communicate with the ND-lOO front-
end processor. In the case of monitor calls from NDIX to the ND-lOO the capability of the indirect seg-
ment has hit 15 ( the other machine bit ) set to one.
Under NDIX the last segment of the kernel text domain (segment 31) will be used for making inter-
processor monitor calls. The result of this mapping is that kernel virtual addresses in the range
0xF8000000 to 0xF9FFFFFF will map onto the ND—lOO monitor calls 0 to OXIFFFFFF.
All addresses passed between the ND-lOO and NDIX, except some during the feinit monitor call, will
be ND-IOO physical addresses.

3.1. Making a Monitor Call
In order to make a monitor call to the ND-lOO the NDIX kernel uses a callg instruction. This instruction
takes as parameters: the address of the called routine, in this case an address in the indirect segment; a
count of the number of arguments to be passed; and a series of operands specifying the addresses of the
monitor call parameters. Monitor call parameters are always passed by address: it is not possible to call
by value, though the contents of the parametric locations are actually available directly to the ND-lOO.
As an example imagine that we wish to make a monitor call number 0x180 to the ND-lOO with four
parameters, then the following code should be executect

callg 0xF8000180, 4, p1, p2, p3, p4
The reader should note that the low 21 bits of the address used are actually set to the number of the mon-
itor call, not to the apparent address, in the called domain, of the handling routine vector. When the
above instruction is executed the ND-lOO is passed a packet of data which contains all the information
included by the call instruction, plus an indication of the monitor call number (e.g. 0x180)’r.
One of the parameters to this call will indicate whether it is to be executed synchronously or asynchro-
nously. If the call is synchronous the NDIX kernel will stop and will only be restarted once the ND-lOO
has serviced the monitor call. Otherwise the NDIX kernel will continue processing and the response will
cause an asynchronous "intenupt"i.

In the NDIX environment a single monitor call is defined to request the ND-100 to perform I/O, and for
communication between NDIX and SINTRAN. This call may have numerous different parameters. The
basic format of the monitor call and associated parameters is defined in this section.

3.2. NDIX Monitor Call Numbers

Since all NDIX monitor calls are pararneterised there need only be one ND-100 monitor call number, as
passed in the data packet, reserved for communication between NDIX and SINTRAN-III; this monitor
call will be number 0x180 (0600) and will be used exclusively for NDIX/SlNTRAN-IH communications.
The exact nature of the monitor request being made from NDIX will be defined by the command field,
passed as the second parameter in the data packet sent to the ND—100 (see figure 3.1).

3.3. NDIX Monitor Call Format
All NDIX monitor requests have the same format, which may be expressed in C as follows:

f The layout of individual monitor call parameters is described in appendix 3.
1 See § 4



-12-

fecall(device, request, response, command)
long device, request;
char *response, *command;

This C call will be converted into a call instruction with four call by address parameters by a low level
routine within the NDIX environment. All the addresses passed to the ND-IOO will be 32 bit ND-lOO
physical addresses‘l, this means that they must be converted from ND-500(O) addresses. Also, all the
addresses passed to the ND-lOO, and all the addresses stored in those locations which are used by
SIN'ITtAN-III must be aligned on an even byte address boundary; this is because the ND-IOO is a word
addressed machine. The detailed meaning of the parameters is as follows:
device

This is a 32 bit device code used by the ND—lOO to determine with which I/O device, if any the
request is associated. The top 16 bits indicate the number of the generic device type (disk, tape,
terminal-in, terminal—out, clock, xmsg, message-device). The lower 16 bits indicate the subdevice
number

31 16 15 0
I I |

generic device subdevice

request
This is a 32 bit code specifying the type of request that is being made; it might specify a read
request, or be a request to perform a control function. The lower 16 bits are used to indicate the
request type, and the upper to indicate further options or qualifiers associated with the request. The
most important qualifiers indicate whether a command is to be executed synchronously or asyn-
chronously. The only other one currently used indicates a re-open on a currently open device.

31 16 15 0
| l I

qualifier request: type

response

This is a 32 bit word specifying the ND-IOO physical address? of the response packet associated
with the monitor request. The ND-lOO fills in the response packet prior to restarting (for synchro-
nous commands) or interrupting NDIX (asynchronous commands). See appendix 3 for details of
specific response packet formats.

command

This is a 32 bit word specifying the ND-lOO physical addressi~ of a data packet which contains the
parameters for this monitor call (see appendix 3 for details). For example a disk read request has a
data field which contains the physical address where DMA is to begin, a count of the number of
data bytes to be transferred and a logical block number, which specifies where on the disk device
the transfer is to commence.

1- Except the feinit monitor call which is made to learn the extent of the ND-lOO's private memory in the first place (see
appendix 3).
T During the feinit monitor call, which is used to establish the physical position of the UNIX program, both the response
and command packet addresses are passed as ND-SOO(O) logical data segment addresses. The ND-lOO can determine their
physical. wherabouts because the data segment occupies contiguous pages staffing at a known physical address (SDATA).



-13-

An Example

As an example, consider an asynchronous block device read request The monitor call takes four parame—
ters: the device number associated with the device on which we wish to perform the read; a request code,
specifying an asynchronous read; the address of a response packet to be used by the ND«100 to return the
completion status of the command; and the address of a packet containing the parameters to the read call.
The monitor request is made in such a way that the parameters to the monitor call (two longwords and
two addresses) all end up in the value fields of the monitor call packet delivered to the ND-lOO. The call
may be expressed in C as follows:

struct read_rpk res_p; /* response packet */
struct read‘cpk com_p; /* command packet */

fecall(DEVICE, FE_READ, &res_p, &com_p);

The fecal] assembler routine will then be:

_fecall:
ents $36

dton b.28
dton b.32

callg 0xF8000180, $4, b.20, b.24, b.28, b.32

ret

The dton instruction converts ND-500(0) addresses into ND-lOO physical addresses. When the monitor
call is made ND-lOO will be passed a data packet containing the parameters of the call. If the monitor
call is synchronous NDIX will stop execution while the request is processed, if it is asynchronous execu-
tion will continue uninterrupted. In the case of our example above, the packet will have the format illus-
trated in figure 3.]. For details of this packet and other possible formats, refer to appendix 3.



0x20

0X40

-14-

0
0x13

P reg hi word

P reg 10 word

0x1 indicates monitor call

0x4 no. of parameters to call

0x180 the ’UNIX’ call

parameter addresses 1
device

request

response

command

DEVICE Value

FE_READ Value

dton(res_p) ND-lOO Physical Address

dton(com.p) ND-IOO Physical Address

Figure 3.1 ND-lOO Memory ( 16 bit words) following an NDIX monitor call.

3.3.1. Request Types

The nature of the actual monitor request, being made to the ND—lOO is defined by the lower sixteen bits
of the request parameter (parameter 2). The following are now defined:

value

0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8

mnemonic

FE_INIT
FE_IDEV
FE_OPEN
FE_CLOS
FE_READ
FE_RCON
FE_WRIT
FE__WCON

meaning

system initialisation
initialise a generic device
open a subdevice
close a subdevice
read a sub-device
synchronous read from system console
write a sub-device
synchronous write to system console



-15-

0x9 FE_DC'IL device control
OxA unuSed
OxB FE_EXIT system shutdown
OxC unused
OxD unused
OxE FE_ERRM send error code to ND-lOO.

3.3.2. Request Qualifiers
Monitor requests can be divided into two categories: synchronous and asynchronous. Synchronous
requests are generally those which take a short time to service or have no response associated with them;
they either return to the caller only when they have completed or they never return at all. Asynchronous
requests are associated with an interrupt context (see below) ; they return immediately to the caller, but
the request may not be completed until sometime later. When an asynchronous request does complete an
interrupt will be generated by the ND—lOO into a context defined during initialisation’r. Some monitor
requests have both synchronous and asynchronous forms.
The above requests may be modified by qualifiers in the upper 16 bits of the request parameter, as
follows:

value mnemonic meaning

0x0 QF_ASYNC asynchronous
0x1 QF__SYNC synchronous
0x2 QF_RE applies on an open call only and indicates that a re-open is required.

(i.e. allowed on already open terminal lines)

All the above monitor requests are defined in detail in appendix 3.

f During the feinit monitor call.



-16-

4. Inter-Processor Monitor Calls
The basic structure of the ND—lOO/NDIX interface provides for an interaction based on monitor calls with
data passed to and from NDIX via shared memory regions. The ND-100 has the power to stop, start and
interrogate the ND-500(0) processor.
Programs running in the ND-500(0) can make monitor calls to other domains in the same machine, or to
the NTD-100, via CALL or CALLG instructions with a subroutine entrypoint which lies in an indirect seg-
ment. Within the NDIX environment system calls from user applications will be implemented via inter-
domain monitor calls. The NDIX kernel itself uses monitor calls to communicate with the ND-lOO front-
end processor. In the case of monitor calls from NDIX to the ND-IOO the capability of the indirect seg—
ment has bit 15 ( the other machine bit ) set to one.
Under NDIX the last segment of the kernel text domain (segment 31) will be used for making inter-
processor monitor calls. The result of this mapping is that kernel virtual addresses in the range
0xF8000000 to 0xF9FFFFFF will map onto the ND-100 monitor calls 0 to OxlFFFFFF.
All addresses passed between the ND-100 and NDIX, except some during the feinit monitor call, will
be Nil-100 physical addresses.

4.1. Making a Monitor Call
In order to make a monitor call to the ND-lOO the NDIX kernel uses a callg instruction. This instruction
takes as parameters: the address of the called routine, in this case an address in the indirect segment; a
count of the number of arguments to be passed; and a series of operands specifying the addresses of the
monitor call parameters. Monitor call parameters are always passed by address: it is not possible to call
by value, though the contents of the parametric locations are actually available directly to the ND-lOO.
As an example imagine that we wish to make a monitor call number 0x180 to the ND—lOO with four
parameters, then the following code should be executed:

callg 0xF8000180, 4, p1. p2, p3, p4
The reader should note that the low 21 bits of the address used are actually set to the number of the mon-
itor call, not to the apparent address, in the called domain, of the handling routine vector. When the
above instruction is executed the ND-IOO is passed a packet of data which contains all the information
included by the call instruction, plus an indication of the monitor call number (e.g. 0x180)’r.
One of the parameters to this call will indicate whether it is to be executed synchronously or asynchro-
nously. If the call is synchronous the NDIX kernel will stop and will only be restarted once the ND~100
has serviced the monitor call. Otherwise the NDIX kernel will continue processing and the response will
cause an asynchronous "interrupt";
In the NDIX environment a single monitor call is defined to request the ND~100 to perform I/O, and for
communication between NDIX and SINTRAN. This call may have numerous different parameters. The
basic format of the monitor call and associated parameters is defined in this section.

4.2. NDIX Monitor Call Numbers
Since all NDIX monitor calls are parameterised there need only be one ND-lOO monitor call number, as
passed in the data packet, reserved for communication between NDIX and SIN'I'RAN—III; this monitor
call will be number 0x180 (0600) and will be used exclusively for NDIX/SINTRAN-III communications.
The exact nature of the monitor request being made from NDIX will be defined by the command field,
passed as the second parameter in the data packet sent to the ND-100 (see figure 3.1).

4.3. NDIX Monitor Call Format
All NDIX monitor requests have the same format, which may be expressed in C as follows:

T The layout of individual monitor call parameters is described in appendix 3.
1: Sec § 4



-17-

fecall(device, request, response, command)
long device, request;
char *response, *command;

This C call will be converted into a call instruction with four call by address parameters by a low level
routine: within the NDIX environment. All the addresses passed to the ND-lOO will be 32 bit ND-lOO
physical addressesT, this means that they must be converted from ND-500(0) addresses. Also, all the
addresses passed to the ND—lOO, and all the addresses stored in those locations which are used by
SINTR'AN-III must be aligned on an even byte address boundary; this is because the ND-100 is a word
addressed machine. The detailed meaning of the parameters is as follows:
device

This is a 32 bit device code used by the ND-lOO to determine with which I/O device, if any the
request is associated. The top 16 bits indicate the number of the generic device type (disk, tape,
terminal-in, terminal—out, clock, xmsg, message-device). The lower 16 bits indicate the subdevice
number:

31 16 15 0
I | l

generic device subdevice

request!
This is a 32 bit code specifying the type of request that is being made; it might specify a read
request, or be a request to perform a control function. The lower 16 bits are used to indicate the
request type, and the upper to indicate further options or qualifiers associated with the request. The
most important qualifiers indicate whether a command is to be executed synchronously or asyn-
chronously. The only other one currently used indicates a re—open on a currently open device.

31 16 15 0
I l l

qualifier request type

response
This is a 32 bit word specifying the ND-lOO physical address? of the response packet associated
with the monitor request. The ND-lOO fills in the response packet prior to restarting (for synchro—
nous commands) or interruptn NDIX (asynchronous commands). See appendix 3 for details of
specific response packet formats.

command

This is a 32 bit word specifying the ND—IOO physical address? of a data packet which contains the
parameters for this monitor call (see appendix 3 for details). For example a disk read request has a
data field which contains the physical address where DMA is to begin, a count of the number of
data bytes to be transferred and a logical block number, which specifies where on the disk device
the transfer is to commence.

T Except the feinil monitor call which is made to learn the extent of the ND-lOO’s private memory in the first place (see
appendix 3).
1' During the feinit monitor call, which is used to establish the physical position of the UNIX program, both the response
and command packet addresses are passed as ND-500(O) logical data segment addresses. The ND-lOO can determine their
physical wherabouts because the data segment occupies contiguous pages starting at a known physical address (SDATA).



-13-

An Example
As an example, consider an asynchronous block device read request The monitor call takes four parame—
ters: the device number associated with the device on which we wish to perform the read; a request code,
specifying an asynchronous read; the address of a response packet to be used by the ND-lOO to return the
completion status of the command; and the address of a packet containing the parameters to the read call.
The monitor request is made in such a way that the parameters to the monitor call (two longwords and
two addresses) all end up in the value fields of the monitor call packet delivered to the ND-lOO. The call
may be expressed in C as follows:

struct read__rpk res_p; /* response packet */
struct read_cpk com_p; /* command packet */

fecall(DEVICE, FE_READ, &res__p, &com_p);

The fecall assembler routine will then be:

_fecall:
ents $36

dton b.28
dton b.32

callg OxF8000180, $4, b.20, b.24, b.28, b.32

ret

The dton instruction converts ND-500(0) addresses into ND—lOO physical addresses. When the monitor
call is made ND—lOO will be passed a data packet containing the parameters of the call. If the monitor
call is synchronous NDIX will stop execution while the request is processed, if it is asynchronous execu—
tion will continue uninterrupted. In the case of our example above, the packet will have the format illus-
trated in figure 3.1. For details of this packet and other possible formats, refer to appendix 3.
boxwid = 2.0 a = 0.3; b = 1.0 move right 1.0 down Blzbox height a "0x13" box height a "P reg hi word"
box height a "P reg 10 word" B2:box height a "0x1" B3zbox height a "0x4" B4zbox height 3 "0x180" box
height b BS: box height a "device" box height a " request" box height a " response" box height a "
command" box height b B6: box height a "DEVICE" B7: box height a "FE_READ" B8: box height a
"dton(res_p)" B9: box height a "dton(com~p)" "0 " at Bl.nw rjust "15" at Bl.nw above "0" at Bl.ne
above " indicates monitor call" at BZe ljust " no. of parameters to call“ at B3.e ljust " the ’UNIX’ call" at
B4.e ljust " parameter addresses" at B5.ne ljust “0x20 " at BS.nw rjust "0x40 " at B6.nw rjust " Value" at
B6.e ljust " Value" at B7.e ljust " ND-lOO Physical Address" at BSe ljust " ND-IOO Physical Address" at
B9.e ljust Figure 3.1 ND-lOO Memory ( 16 bit words) following an NDIX monitor call.



4.3.1. Request Types
The nature of the actual monitor request, being made to the ND-lOO is defined by the lower sixteen bits
of the request parameter (parameter 2). The following are now defined:

value

0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
OxA
OxB
OXC
OxD
OxE

mnemonic

FEJNIT
FE_IDEV
FE_OPEN
FE_CLOS
FE__READ
FE_RCON
FE_WRIT
FE_WCON
FE_DCTL

FE_EXIT

FE_ERRM

4.3.2. Request Qualifiers
Monitor requests can be divided into two categories: synchronous and asynchronous. Synchronous
requests are generally those which take a short time to service or have no response associated with them;
they either return to the caller only when they have completed or they never retum at all. Asynchronous
requests are associated with an interrupt context (see below) ; they return immediately to the caller, but
the request may not be completed until sometime later. When an asynchronous request does complete an
interrupt will be generated by the ND-lOO into a context defined during initialisation'l. Some monitor
requests have both synchronous and asynchronous forms.
The above requests may be modified by qualifiers in the upper 16 bits of the request parameter, as
foHows:

value

0x0
0x1
0x2

mnemonic

QF,ASYNC
QF_SYNC
QF__RE

-19-

meaning

system initialisation
initialise a generic device
open a subdevice
close a subdevice
read a sub—device
synchronous read from system console
write a sub—device
synchronous write to system console
device control
unused
system shutdown
unused
unused
send error code to ND-lOO.

meaning

asynchronous
synchronous
applies on an open call only and indicates that a re-open is required.
(i.e. allowed on already open terminal lines)

All the above monitor requests are defined in detail in appendix 3.

1* During the feinit monitor call.



5. Device Driving
Since the ND-500(0) has no I/O bus, and all the computer’s peripherals are attached to the ND-lOO and
driven by its SINTRAN-III system; it is necessary for the NDIX system, running in the ND-500(0), to
use the ND-lOO as an I/O processor. All I/O requests made by NDIX drivers will be translated into moni-
tor calls to the ND-lOO, using the format described above. This section discusses the special issues, relat-
ing to device driving, which arise out of the requirements of the NDIX device interface.
As explained in the introduction to this document, the NDIX kernel runs entirely in the ND-500(0) pro-
cessor and makes use of the ND-lOO front-end, running SlN'l'RAN—III, as an intelligent I/O processor.
Since the UNIX I/O system is designed around the assumption that it is driving hardware controllers, and
that these controllers generate interrupts on a number of interrupt levels; NDIX, and the NDIX/ND-lOO
interface in particular needs to provide a simulation of this arrangement. Specifically this must include
operation of NDIX at a number of interrupt priority levels (IPLs).

5.1. [/0 requests

5.1.1. Asynchronous Requests
Most [/0 requests (i.e. reads & writes), associated with devices attached to the ND—lOO are designed to
complete asynchronously. When the NDIX system makes a monitor call to start 1/0 the request will be
accepted by the ND-lOO without NDIX processing being interrupted. This is equivalent in functional
terms to the NDIX driver starting an I/O request by setting an I/O controller’s command register.
When the ND-lOO eventually completes an l/O request a "sub-device descriptor" will be queued for
NDIX in shared memory. If the IPL level set is lower than that associated with the interrupt the ND-lOO
will stop NDIX, wherever it happens to be executing, save its context in a specific location in ND-500(0)
physical memory associated with the current IPL leveli, and then restart it in a context which is dedicated
to handling completion of I/O. NDIX will then be responsible for determining which I/O request has
completed from information provided in a shared memory segment, and taking the relevant action (i.e cal-
ling the correct interrupt handling sub—routine). When the interrupt has been dealt with NDIX will check
the interrupt queue for any further "interrupts" on the current IPL level or any level above that in which it
was previously executing and will process those before reloading the saved context.
In summary, the sequence of events which will take place when a NDIX device driver makes an asyn-
chronous I/O request are as follows:
0 The NDIX kernel makes a monitor request, with the command qualifier bit zero clear, and contin—

ues processing.

0 The data packet, associated with the monitor request is passed to the ND-500(O) driver, running in
the ND-lOO.

0 The ND~100 queues the I/O request inside SIN'l'RAN-III.
- Time passes and eventually the ND-lOO driver completes the requested I/O.
0 The response packet for the completed command is updated by the ND—100.
- A "sub-device descriptor" is queued in shared memory.
0 If the IPL level of this interrupt is higher than that currently set by NDIX then NDIX is stopped,

and its context saved in an area of ND-500(0) physical memory, associated with its current IPL
level. ND-500(0) memory, used in this way is called a context block (CXB).

- NDIX is restarted in the context specified for handling interrupts. At this point the ND—lOO
changes its idea of the interrupt priority level of NDIX to a new value associated with the currently
interrupting device.
If DMA is performed during the I/O request (ie. is feread or fewn’te), and the data buffers used for
read/write transfers are not on a no—cache segment then a Dump__Dirty_Cache instruction must be
performed by NDIX before the DMA transfer, and a Clear_Cache instruction after a read.

1" For the layout of the context block see appendix 2.



-21-

NDIX handles the interrupt and then processes all other queued interrupts with an IPL above that in
which it was previously executing. These are queued by the NDlOO in time within IPL level order.
NDIX then reloads the saved context

The above sequence is represented graphically in figure 4.1.
ND-500(0) ND—100

call > queues request
allows other ND—500(O) process to run

I
I

request completes
queue return info

I
V

|
I
I
I
I
I
V I stop NDIX

-------- save context.

load new context & IPL
~~~~~~~ restartI<-------

V I
——>handle interrupt I
I check int Q l
I | I |
------ empty or I

lower than |
previous IPL]

I I
V I

+————reload CXB I
I ' I
V

Figure 4.1 Asynchronous Device Driving

5.1.2. Synchronous Requests
When opening some devices, performing system initialisation, or when writing error messages to the sys-
tem console the NDIX kernel waits for all 1/0 to complete before proceeding with further processing. For
this reason the NDIX/ND-lOO interface implements synchronous I/O requests, not associated with an
interrupt context. When a synchronous request is made, NDIX is stopped until the I/O has been com-
pleted, at which point the response packet is filled by the ND-lOO, in exactly the same way as it would be
for an asynchronous request. NDIX is then restarted at the location following the monitor call instruction.
In detail, the sequence of events which take place when an NDIX device driver makes a synchronous I/O
request is as follows:

The NDIX driver makes a monitor request, with the command qualifier bit new set.
NDIX stops and the data packet, associated with the monitor request is passed to the NDJOO.
The ND-lOO queues the I/O request.
Time passes and eventually the ND-100 driver completes the requested I/O. During this time no
other asynchronous events can complete and NDIX remains stopped.
The return status of the completed command is written, by the ND-lOO, into the response packet
associated with the now completed request.



-22-

- NDIX is restarted at the instruction following the monitor call instruction, which initiated the I/O
request

The above sequence is represented graphically in figure 4.2.

NDIX ND-lOO
I
I ———————> stops NDIX
I allows other ND—500(0) process to run
I queues request.
I I

waits.. I I
I I
I request completes
I
I
I
I

‘‘‘‘‘‘ restart

Figure 4.2 Synchronous Device Driving

For more details, see appendix 3.

5.1.3. Command and Response Packet Formats

All valid command packets start with a 16 bit operation code. The layout will only be specified if extra
information is included.
Similarly all valid response packets start with a 16 bit completion code. If this is O the operation com-
pleted successfully. If not then it is an interface error code. For disks and tapes this code may indicate
that a hardware error has occured and a hardware status word is always present following this, i.e:

name offset size meaning

completion 0 2 0 command completed 01:
it May indicate an interface error, or a h/w fault (h/w status given in status)

status 2 2 drive hardware status

5.2. Interrupts
To prevent the interruption of NDIX when manipulating critical data structures and to prevent two inter-
rupts from occuring simultaneously on the same generic device an interrupt priority scheme must be
implemented. In order to achieve this the current NDIX interrupt priority level (IPL) is held in shared
memory. Each generic device is associated with an IPL level at which it interrupts. This may be
between 1-6. IPL level 0 indicates that all interrupts are enabled, 7 indicates that they are all inhibited
During servicing of an interrupt the lPL level is set to that associated with the generic device. An IPL
mask is also held in shared memory indicating which interrupt levels are active but currently interrupted
by a higher IPL.
Interrupts to NDIX from the ND-lOO are vectored via an address passed in the feiniz call. This call also
specifies the addresses of the interrupt context blocks (CXBs). When an feidev monitor request (see
Appendix 3) is made to initialise a specific generic device the device is associated with an IPL.
The exact sequence of actions which the ND-lOO should perform when it interrupts NDIX is as follows:
0 The IPL record area in shared memory is locked. This locks both the IPL data and the sub-device

descriptor queue.

- The subdevice descriptor is placed on the interrupt queue.



5.2.1.

-23-

If the IPL at which NDIX .is running is higher than the IPL of the interrupt the IPL record is
unlocked and no more action is taken.
Otherwise NDIX is stopped and its context saved in the context block associated with its currently
executing level.
The NDIX Interrupt Priority Level (IPL) is increased to that associated with the generic device, and
the mask is updated if the previous level was non-zero. Saving the IPL allows the NDIX kernel to
maintain a stack of IPLs when nested interrupts occur.
The P register is loaded with the address passed in feinr't. If the CED when the interrupt occurred
was non-zero, the CAD is loaded with this value, otherwise, it is left unchanged. All other pro-
gram registers should be left unchanged.
NDIX is restarted in the new (kernel) context. (The IPL record is unlocked by this context).

Structure of the IPL Record
This is located in the same segment as the interrupt descriptors. There are 64 bytes reserved for this
record of which 10 are currently used for the following fields:

Byte Length Meaning

Current IPL
Bit mask indicating active interrupt levels
IPL lock, controls access to current IPL.c

o
m

e
-o

N
N

N
-h

5.2.2. Structure of the Sub-device Descriptor
Sub-device descriptors are all located on the shared data segment. Each contains the following fields:

Byte Length Meaning

Interrupt Priority Level of interrupting sub-device.
Address of SIN'I'RAN datafield
Sintran logical device number/unit number
NDIX generic device number
NDIX sub-device (minor device) number
Flag word
Function code to NDIX server rt-program
Address of response packet. ND-lOO address.

)u
d O

h
N

tt
-
‘H

N
N

N
A

As an example of interrupt handling consider the following scenario:
NDIX has requested I/O transfers on disk sub-devices 1 and 4, and also on terminal device 0x22.
The IPL of NDIX is zero, and the IPLmask is zero.
The 1/0 request on disk sub—device 0x1 completes and an interrupt descriptor is queued for NDIX.
NDIX is stopped and its current context saved in context block 0. The IPL of NDIX is raised to 4
(the IPL associated with disks) the IPLmask remains as zero. NDIX is restarted in its interrupt
context.
NDIX accesses the interrupt descriptor, determines that this is a disk interrupt and dispatches the
interrupt to the disk driver interrupt routine.
While NDIX is servicing the interrupt the terminal I/O request completes.

Pointer to head of interrupt queue. ND-lOO address.(Zero when queue is empty)

Link to next element in queue. ND-IOO address. (Zero if no more queue elements)



-24-

0 Using the rule of dispatching interrupts in order of decreasing IPL first and in the the order in
which their respective commands were requested within each interrupt level, the interrupt associ-
ated with device 0x22 has priority as its associated IPL is S. The interrupt descriptor is placed at
the top of the queue and NDIX is stopped. Its context is saved in context block 4 and the IPL is
raised to 5. Bit 4 in the IPL mask is set. NDIX is restarted in its interrupt context.

0 NDIX accesses the interrupt descriptor, determines that this is a terminal interrupt and dispatches
the interrupt to the terminal driver interrupt routine.

0 The 1/0 request on disk sub-device 0x4 completes and an interrupt descriptor is queued for NDIX.
The current IPL level is 5 so NDIX is not interrupted.

o NDIX completes servicing of the terminal interrupt. It checks the IPL level of the next queued
interrupt and notes that this is lower than its current level. It checks the IPLmask and notes that the
IPL of the saved context is not lower than the next queued interrupt. It clears bit 4 in the IPLmask,
sets current IPL to 4, and reloads the context in context block 4.

- NDIX completes servicing the disk interrupt. It checks the IPL level of the next queued interrupt
and notes that this is not lower than its current level so it dispatches the waiting disk interrupt.

o Eventually servicing of the second disk interrupt will complete. The interrupt queue is empty and
the IPLmask is zero. NDIX set the current IPL to O and reloads the context saved in context block
0.

5.3. Device Initialisation and Control
When driving devices it is usually necessary to initialise them before any 1/0 is attempted and the NDIX
system is no exception. Also, it is often required to perform operations, not specifically associated with
any I/O. For instance, it may be required to write a file mark onto a magnetic tape, or to change the baud
rate of a terminal line. The NDIX interface supports a number of monitor calls to perform these device
initialisation and control functions.
Device Initialisation

Before any I/O can be performed on a generic device an feidev call must be made. The main pur~
pose of this call is to associate the device with an IPL level and to determine how many sub-
devices are present. Following an feidev call each sub-device must be opened with an feopen call
before any 1/0 is attempted.

Device Opening
The feapen request is used to perform any sub—device specific initialisation and also to return
configuration data, such as disk size to the NDIX kernel. It also mediates device use between
NDIX and SINTRAN. Any device specific characteristics that may be altered by NDIX should be
saved when the feopen is done. Once an feopen has been performed the device is used exclusively
by NDIX until an feclos call is used.

Device Close Down
When a sub-device is no longer required an feclos call will be issued, this reverses the effect of the
previous feopen, request. After an feclos call control of the device passes to SINTRAN, which
should reset the device to its status before the feopen.

Device Control

The fedctl call can be used to change the configuration of an already feopen’d sub-device, or to
affect sub—device specific functions, such as writing tape marks, changing a terminal’s configuration
etc.

For details of how control monitor calls should be used on specific device types, see appendix 3.

5.4. Device Numbers & Types
NDIX and SINTRAN-III device numbers have a different format. Under NDIX each device is associated
with two device numbers stored together as upper and lower bytes of a sixteen bit word. The upper byte,
or major device number is associated with a particular device driver (i.e. a different piece of hardware).



-25-

The lower byte, or minor device number is used to specify a particular logical device on the specified
major device. For example a magnetic tape unit might have major device 2 and the drives be addressed
by specifying minor devices 0, 1, 2 etc. Under SIN'I'RAN-III each minor device is associated with a dis-
tinct, zmd essentially random logical unit number. For example magnetic tape drives 0, l and 2 have log-
ical unit numbers 32, 33 and 21 respectively.
All NDIX drivers make requests, via monitor calls, which specify the device on which 1/0 is to be per-
formed in the form of a 32 bit longword. The high order 16 bits of the word are called the generic device
and the low order 16 bits are called the sub-device. The generic device will be used to specify the type
of device being addressed: disk, tape, terminal-input, tenninal-output, clock, etc; this tells the ND-lOO
how to interpret the particular monitor request parameters.
On an feidev call the ND-lOO returns information about the number of sub-devices that are available for a
particular generic device type.
For disks and tapes this number will actually define the maximum number of devices present. Each
minor device number will correspond to a known physical unit and some sub-devices within the possible
range may not be present. This will be indicated by an error code in response to a subsequent feopen.
The maximum number of physical tape devices supported will be 16. The maximum number of hard
disks will be 12, and floppy disks 4 (Floppy disks will always be minor device number 12-15). It is
intended (in a future release) to separate hard and floppy disks generic devices. An feopen on any given
sub-device may return further information (such as disk type/size, see § 4.4.2).
For terminals two numbers will be returned. The first will be a 32bit bitmap indicating the terminals phy-
sically present in banks of 4, starting with the most significant bit. i.e. if the most significant bit is set
then terminal minor devices 1,2,3 & 4 are deemed to be present, if the least significant bit is set then
minor devices 125,126,127 & 128 are present. Minor device 0 is used as a special logical device and
refers to the logical NDIX console (see § 4.4.1). Minor device 129 is the hardware console and is con-
sidered to be always present. The second number refers to the total number (max 126) of remote tenni-
nals connected to the system.

The device number is used as to index into a table maintained by the ND-lOO. which tells the ND-lOO
which SINTRAN-III driver it should use to actually perform the I/O.
Certain device codes may be used when no real device is involved and the sub-device can be used to
indicate other, request specific information.
Given below is a table of generic device numbers and the types of devices which are associated with
them.



-26-

Type Generic

reserved 0 for trap handling

Disk 1

Tape 2

Terminal-in 3

Terminal—out 4

Clock 5

reserved 6 (for floppy disks at a future date)

Xmsg 7 Communications link

Software Int 8 Used for loopback testing

Mdev 9 Used for SlN’I’RAN-NDIX communication’r

The following table summarises the valid combinations of generic devices with monitor requests, see
appendix 3 for details. Also shown is the valid combinations of synchronous and asynchronous l/O
modes.

Generic Code
None 1 2 3 4 5 7 8 9 A/ S

FE_INIT x s
FE__IDEV X X X X X X X X S
FE__OPEN X X X X X X A/ S
FB_CLOS X X X X X A/ S
FE__READ X X X A
FE_RCON x s
FE_WRIT x X X A
FE_WCON X S
FE__DCTL X X X X X X A/ S
FE_EXIT x s
FE_ERRM Any 5

5.4.1. The NDIX Console

The device used as the NDIX console may vary and the information about which of the terminal minor
devices is to be used as the NDIX console is passed in the feinit call. Internally NDIX should not support
a login on Idev/console as requests on this device will be routed logically by the ND-lOO to the specified
terminal. This will prevent the system trying to run two getty processes on the same device.
The console terminal may be shared between NDIX and SIN’I‘RAN. Whilst a user is logged in to either
system output from NDIX will always be allowed. The NDIX fercon may also always be used without
error. In practise this call is only made once between loading a GENERIC kernel and its becoming

Tsee§9



-27-

completely established (signalled by an fedctl on the message device). Therefore between a START-
NDIX command and output of this fedctl control of the terminal should be given to NDIX.

5.4.2. Disk Codes
Figure 4.4 shows a list of codes remmed from the feopen command and the corresponding disk types.

feopen NDIX disk
type name

1 di70 CDC RSD 70Mb
2 di75 CDC SMD 75Mb
3 dil40 Fujitsu M2322K 140Mb
4 di288 CDC SMD 288Mb
5 di310 CDC 9720 EMD 310Mb
6 di450 CDC FSD III 450Mb
7 di520 NEC D-2352—H 520Mb
8 di70x2 Shared Fujitsu M2322K 140Mb
9 d1218 Shared CDC SMD 288Mb

10 di380 Shared CDC FSD III 450Mb
11 di240 Shared CDC 9720 EMD 310Mb
12 di70__450 Shared NEC D-2352-H 520Mb

128 difd Floppy
255 SCSI type

Figure 4.4 Disk codes

5.5. Minor device numbers
0 Hard disk unit numbers and names.

Controller Unit minor device NDIX
numbers disk

1 0 O - 7 diO
1 1 8 - 15 dil
l 2 16 - 23 di2
1 3 24 - 31 di3
2 0 32 - 39 di4
2 1 40 —47 diS
2 2 48 - 55 di6
2 3 56 - 63 di7
3 0 64 - 71 di8
3 l 72 - 79 di9
3 2 80 — 87 di10
3 3 88 - 95 dill

- Floppy disk unit numbers and names.

Controller Unit minor device NDIX
numbers disk

96 — 103 di12
104 e111 dil3
112 ~ 119 dil4
120 - 127 di15.—

->
-o

>—
-I>

-

W
N

H
O



5.6.

-28-

Magnetic tape unit names and numbers.
The device name is mt<minor> where minor is an 8 bit number derived as follows:

Bit 7 must be zero
Bit 6,5 controller number - 1
Bit 4,3 density 0 = 800 bpi

1 = 1600 bpi
2 = 6250 bpi
3 = 3200 bpi

Bit 2 no rewind on close
Bit 1,0 unit number

Scheduling Considerations'within the ND-IOO
It should be clear that the relationship of the ND-500(0) and ND-lOO processors when NDIX is running is
markedly different from their relationship under SINTRAN III. The main difficulty which is likely to be
encountered in the implementation of the ND-lOO/NDIX interface is the need to provide a driver in the
ND-IOO which implements a scheduling algorithm which differs significantly from that afforded by the
current SINTRAN III timeslicer and swapper. The following points should be noted.
0 All processing by NDIX takes place in one ’process’. The NDIX kernel occupies domain 0 of this

process and a lu'erarchy of ND-500(0) domains, below this, run NDIX user tasks.
Only the kernel domain will make monitor calls to the ND-lOO; as a result, and because the NDIX
kernel must be allowed to choose which NDIX domain is active; control will, in almost all cases,
be passed back to the NDIX kernel immediately without waiting for a monitor call to complete.
The net result of the asynchronous completion of monitor calls from the NDIX is the need for the
ND-IOO driver to maintain a fairly lengthy queue of outstanding requests. The NDIX kernel will
guarantee not to queue multiple simultaneous requests on the same sub-device, however it must be
allowed to have one I/O request outstanding on multiple sub-devices at the same time‘l'. This is the
normal situation when using hardware controllers.
NDIX must be allowed to have outstanding read and write requests on all terminal subdevices
simultaneously; this is to allow the NDIX terminal interface to implement read-ahead, echo and
program breaks, correctly. Furthermore the NDIX system must be allowed to execute synchronous,
non—I/O commands at any time.
During interrupt servicing the ND—IOO must be inhibited from generating interrupts to the ND-
500(0) NDIX kernel associated with interrupt levels lower than or equal to the level of the interrupt
currently being serviced. This necessitates the maintenance of a queue of outstanding, but not yet
serviced completion interrupts. When the IPL is eventually lowered again intemrpts should be sent
to the ND-500(O) in the same order that their respective I/O requests completed. This ensures that
all interrupts will eventually get serviced.
Even though the actual interrupt priority levels used by the ND-IOO hardware for each device (
especially the clock ) may differ from those that NDIX expects the IPL scheme must be correctly
simulated.

1‘ Support for multiple. outstanding, per sub-device 110 requests may ultimately be needed, to increase the performance of
NDIX.



-29-

6. The Clock Interface
The NDIX kernel requires frequent and accurate signals from hardware, specifying the passage of real-
time. These signals are used to maintain the time of day clock, and to drive the timesharing system.
Within the NDIX environment clock interrupts should be generated by the ND-lOO at a frequency of
25Hz (i.e. half the line frequency of 50Hz), using the intenupt mechanism described previously.
The clock may be considered an I/O device. It is generic device 5 and has an interrupt priority level of 3.
It is enabled, in the same manner as for any other I/O device, by the use of an feidev monitor call which
passes the IPL level to the ND-lOO. The response to this should contain the current date and time in
SINTRAN format. This must be correct GMT. Once the clock has been started by issuing the feidev
monitor call the ND-lOO will generate an interrupt, whenever the next clock period expires and subse-
quently at the end of each 40ms time interval.
The feinit call retums the address of a segment in shared memory containing a clock record at a known
offset. This record should contain the number of clock ticks (in 20ms intervals) since bootup. If this
value is updated correctly by the ND-IOO every 20ms, even if the clock interrupts are currently inhibited,
then the NDD( kernel will always be able to maintain a correct idea of the time. Normally the ND—lOO
will create a clock interrupt every 40ms. The ND-500(0) may inhibit pending clock interrupts from being
issued by raising the IPL to level 3. When this is done the clock interrupt will be placed on the interrupt
queue.
If a clock period expires before the ND-500(0) has lowered the IPL, or because a synchronous request has
been generated, the ND-lOO must keep a count of the number of periods that have actually elapsed by
updating the tick c0unt in the clock record. This allows the UNIX kernel to update its internal clock as
necessary. Only 1 clock interrupt should be outstanding on the interrupt queue at any one time.

6.1. Clock record format

Byte Length Meaning

Clock ticks since bootup
cpu time used by NDIX, measured in clock ticks
NDIX run-Q bit—mask
NDIX in—kernel indicator
NDIX in—interrupt handler indicatorta

r-
4

0
0

.5
0

H
t—

It
b

ib
p

2
3

The NDIX run queue information is placed in the clock record to make it available for use by the SIN-
TRAN scheduling algorithms. The bit mask indicates which of the 32 NDIX run queues is occupied.
The highest priority queue corresponds to the least significant bit, the lowest to the most significant bit.
A total of 64 bytes is reserved for the clock record in the shared segment.



-30-

7. Traps in NDIX in the ND-500(0)
In previous versions of NDIX some non~fatal traps (page faults and protection violations) were automati—
cally sent to the ND-lOO. This is no longer the case. For a description of the trap handling for these
exceptions see "Trap & Interrupt handling in NDIX version C".

7.1. General Traps
Fatal traps which occur in any of the domains of the NDIX process (i.e in kernel or user processes) are
automatically sent to the ND~100. The ND-lOO receives a packet of data which describes the nature of
the fault. This will occur for the following faults:

Trap handler missing
power fail
processor faultt‘
hardware fault
monitor-call error (pseudo-trap)

When. a power fail occurs this will not be indicated to NDIX. A pause of up to half-an-hour can occur in
processing. NDIX should be able to continue processing at any time within this period (Check for prob-
lems)

When a "trap handler missing" fault or a monitor call error occurs under NDIX, or whenever a hardware
fault occurs NDIX must be immediately restarted in a trap context by the ND-lOO and some information
describing the fault sent to the NDIX trap handlerzt. This is achieved by associating the NDIX routine
which. handles such faults with a special reserved generic device number(0). NDIX will be interrupted in
the same way as for device interrupts, except that the interrupt is not associated with any IPL. The con-
text is: saved in a special trap context area , and the information in a reserved data area. The addresses of
the context area and the trap data area are passed to the ND-IOO during feinit. Since the only action
taken by NDIX at this point will be an attempt to flush the buffer cache, and write a crash image before
calling feeJa‘t not much infomation needs to be transferred, except that it is more convenient for subse—
quent fault finding to write out this data with the crash image.
It would be more convenient, and possibly safer, for NDIX merely to flush its buffer cache and call feexit.
The feexit would contain information as to where the crash image should be placed (i.e. disk subdevice
and block offset). The ND-lOO could then write the trap information out with the crash image to the
specified place. In these circumstances there would be no need to transfer the trap context and data to
NDIX.

7.2. Trap Data

The layout of the current trap data packet is as shown in fig 6.2, the layout'of a context block is shown in
appendix 2.
Monitor call errors will be indicated by a "trap number" of 42. The erroneous generic device and sub-
device numbers passed to the ND»100 will be placed in the first word of the data array in the trap data
block.

T HKD to check cause of this
i It is currently undecided whether processor faults should always be vectored to NDIX or only when it is using the epu.



-31-

62
Figure 6.2 Trap data block in ND-SOO
8. SlNTRAN/NDIX Communication
Since SINTRAN and NDIX share cpu time and memory in the ND-SOO(O) a method of communicating
between the two operating systems is required.
A generic device (number 9) will be used for communication between Sintran and NDIX. This will have
2 subdevices. Subdevice 0 will be used for passing information for scheduling, and subdevice 1 will be
used for communication about the transfer of pages between Sintran and NDIX.

8.1. Memory Sharing
Information about which physical pages are used by which operating system is passed in the form of a
bit—map. This is 2048 bytes long, and each bit corresponds to a page in memory. The maximum amount
of memory that can be shared in this way is therefore 16k pages or 32Mbytes. The bit—map is always
passed. via a shared data segment. The address of an area in memory containing the index page for this
segment and the segment itself is passed to NDIX in the feinit call. At that time the bitmap indicates
which shareable pages are available for use by NDIX (other than the kernel pages which have already
been loaded and are not shareable).

After the the bit—map information has been saved an feidev will be issued for the message device. This
will be followed by an asynchronous fedczl request on subdevice 1. The request will complete if Sintran
requires to give or take memory from NDIX. The output of this first fedctl indicates to Sintran that
NDIX has established itself successfully.
There will be two operator commands affecting memory allocation; Give-NDIX-memory and Take-
NDIX~memory. Both commands will be passed through the interrupt-handling mechanism and cause a
wake-up on the NDIX page daemon. When the page daemon has actioned the command it will send a
completion message to Sintran in the form of another fedctl request on the message device subdevice l.
The request will not complete until Sintran requires a further transfer of pages.
The Take-NDIX-memory response will specify the number of pages required. NDIX will page out as
required, and create a bit map to indicate the pages released before informing Sintran. If NDIX cannot
supply all the pages requested by Sintran it should page out as many as possible and then return (in the
fedctl command packet) the number of pages actually supplied. Sintran should not access the bit map
until the reply is received. On a Give-NDIX-Memory the bit-map will indicate the pages newly available
to NDIX. NDIX will check the new map (a panic may occur if it is inconsistent) update its coremap and
indicate completion to Sintran. Again Sintran should not access the bit map until the reply is received.

8.2. Scheduling
NDIX must be able to inform Sintran when it is in idle loop so its priority can be lowered. The message
device, subdevice 0 will be used for passing this information. A synchronous fedctl will be sent when
NDIX is in the idle loop. The response will only be made if an interrupt from another device is about to
occur.



-32-

9. Starting and Stopping NDIX
This section describes the startup and shutdown of NDIX. It’s intention is to outline the flow of control,
structures and utilities required.

9.1. Loading from Sintran.
The NDIX kernel is loadedT into ND-SOO(O) memory by the Sintran command:

@LOAD-NDIX,<FILENAME>,<CONSOLE>

and starts running at location 4, domain 0. The actual kernel loaded is in the Sintran files:
FILENAMEIDSEG
FILENAMEZPSEG

which appear to be standard ND500(0) data and program segments. The memory allocation for the
NDIX system is derived from a "sidefile":

FILENAMEINIT

which contains (inter alia) the minimum size of the contiguous area and the minimum number of allocat-
able pages.

9.2. Initial NDIX activity
The NDIX kernel will issue an feinit call, and the response packet is filled in by the ND-lOO, obtaining
the howto and rootdev fields from the sidefile. There are three main conditions which can cause the boot
to fail after this point:
t The NDIX kernel attempts to find its root device, either from rootdev, or by operator intervention

(when RB_GENERIC set in howto) at the NDIX consolei. If rootdev does not specify a valid root
device, the the NDIX kernel will issue an feexit with RB_BOOT in s3_how unset, indicating that
no further action can be attempted. If the operator does not specify a valid root device, the NDIX
kernel will reprompt.

- If the contiguous memory allocated to NDIX is not enough, the NDIX kernel will issue an feexit
with s3_how set to RB_CONTIG and RB_RESET. The command packet will be built from the
response packet to the feinit, except that contigno will have been modified.

0 If the dynamically allocatable memory allocated to NDIX is not enough, the NDIX kernel will
issue an feaxit with s3_how set to RB_SCATTER and RB_RESET. The command packet will be
built from the response packet to the feinit, except that pageno will have been modified.

The NDIX kernel will then examine the flag RB__SINGLE in howto, and modify the flags to letc/init
accordingly so that init will bring NDIX to either single or multi-user state.

9.2.1. Sintran activity if boot fails
If NDIX fails to establish itself, and is still able to communicate with the NDlOO, then it will issue an
feen't monitor call.
If RB_BOOT in s3_how is unset, then NDIX should be halted with an error message (this may or may
not be in addition to the error message passed in feexit) indicating that the kernel image (or its associated
data in the sidefile) on Sintran is not usable.
Sintran’s indication that NDIX is successfully established is an fedctl on the message device - this should
be interpreted as the kernel image (and sidefile) are usable, and future RB‘HALT settings will not indi-
cate a Sintran error condition.

1 This loading is described in detail in § 2.
i&w§4AJ



-33-

Otherwise, either RB_CONTIG or RB_SCATTER will be set, together with RB_RESET, and the sidefile
should be modified to include the new value, and the system rebooted using the information contained in
the fear? command packet.

9.3. Normal NDIX termination

A normal NDIX termination is caused by a call to reboot(2) from one the utilities halt(8) or reboot(8)t‘.
Normal NDIX shutdowns can be grouped into 3 categories:

9.3.1. Total Shutdown without Reboot
This is caused by a call to halt(8), which will issue one of the following system calls, dependant on the -n
flag:

reboot(0, (char *)0, (dev_t)0, (dev_t)0);
reboot(RB_NOSYNC, (char *)0, (dev_t)0, (dev__t)0);

The NDIX kernel will issue an feexit with RB_BOOT in s3_how unset.

9.3.2. Shutdown with Reboot of the Same System
This is caused by a call to reboot(8), which will issue the following system call:

reboot(RB_BOOTIRB_SAME, (char *)0, rootdev, condev);

The command reboot(8) will need modifying for new arguments -s. -r rootdev and -c condev. The flags
will have the following effects on the system call:
-n The first argument to the system call will have RB_NOSYNC additionally set.
-s The first argument to the system call will have RB_SINGLE additionally set.
-r The third argument to the system call will be set to indicate the root device. If this flag is not

present, then the first argument is aditionally set to RB_SAMEROOT.
-c The fourth argument to the system call will be set to indicate the NDIX console. If this flag is not

present, then the first argument is aditionally set to RB_SAMECON.
The reboot system call leads to the issue of an feexit command packet with RB_BOOT set in s3_how and
default values for the remaining fields as follows:

howto rootdev condev value received in the feinit call
contigno pageno bootme value received in the feim't call
crshdev crshsr crshend not set in this release

Aditionally, s3_how has RB_RESET set if any of RB_SINGLE, RB_SAMEROOT or RB_SAMECON
are set in howto.
The additional bits set in the first argument will have the following effects on the feei command packet:

RB_NOSYNC None.
RB_SlNGLE howto in the command packet is set to include RB_SINGLE.
RB_SAMEROOT The third argument to the system call is copied to rootdev in

the command packet.
RBfiSAMECON The fourth argument to the system call is copied to condev

in the command packet.

1* Other utilities call these utilities, however halt(8) and rebool(8) are the only ones which invoke the system call.



-34-

9.3.3. Shutdown with Reboot of a New System.
This is caused by a call to the new utility newboot(8),

newboot [-g] [—s] [-r rootdev] [~c condev] filename

which will issue the following system call:
reboot(RB__BOOTlRB_NEW, filename, rootdev, condev );

The flags are defined as follows:
~g The first argument to the system call will have RB_GENERIC additionally set.
-s The first argument to the system call will have RB_SINGLE additionally set.
The second argument is passed unchanged to the system call.
If the flag -r is present, then rootdev is passed as the third argument, otherwise the first argument will
have RB_SAMEROOT additionally set.
If the flag -c is present, then condev is passed as the fourth argument, otherwise the first argument will
have RB_SAMECON additionally set.
NDIX will issue an feexit call with s3_how set to RB_BOOTIRB__RESET, and howto reflecting the
RB_GENERIC and RB_SINGLE options.
If RBWSAMEROOT was set in the call to reboot(2) then rootdev is set to the value passed in the feinit
response packet, otherwise it is set to the third argument.
If RB__SAMECON was set in the call to reboot(2) then condev is set to the value passed in the feinit
response packet, otherwise it is set to the fourth argument.
The feiniz response packet is also used for the values of contigno and pageno. The setting of boom is
taken from the second argument to reboot(2).

9.3.4. Sintran Activity on Normal NDIX Termination
If RB__BOOT in 33_h0w is unset NDIX memory may be reclaimed for other use. NDIX will only be res-
tarted by a new LOAD-NDIX command.
If RB__BOOT is set in s3~howto, the NDIX driver should reboot NDIX, from the file named in bootme.
Before rebooting NDIX however, the sidefile must be updated if RB_RESET was set in s3_how. Note
that the sidefile might not exist at this point.

9.4. Abnormal NDIX termination
When the NDIX kernel terminates abnormally it will behave as if the system call

reboot(RB_BOOT, (char *)0, (dev_t)0, (dev_t)0);

had been issued

9.4.1. Sintran Activity on Abnormal NDIX Termination
Is covered in §1.5 above, since Sintran is not informed that the termination was not intentional.

9.5. Data Structures

9.5.1. The Sidefile
Each NDIX system has five variables required for booting and memory sizing. They are:
howto the mode the kernel is booted in
rootdev the root device
condev the NDIX console device



-35-

contigno size of the contiguous memory area
pageno number of dynamically allocated pages

These variables need preserving over complete system shutdowns and are associated with a given pair of
Sintran files. This document assumes these variables are located in a file, however, the exact implementa.
tion may be decided by the driver.

9.5.2. Reboot Flags
The following flags are used to indicate the type of boot or halt required. First in the variable s3_how (in
the fee'xit command packet) which indicates the actions required by Simian.

RB_B«OOT 0x1 Reboot NDIX
RB_KESET 0x2 Reset the sidefile
RB__CONTIG 0x4 New value of contigno
RB~SCA'I'I'ER 0x8 New value of pageno
RB_CIRASH 0x10 Take crash dump (not implemented)

The variable howto (in the sidefile,’ and sent by feei and feopen) has the following values:

RB_GENERIC 0x20 This is a Generic Kernel
RB_S]NGLE 0x40 Only boot to single user

The following flags are (additionally) used in the first parameter to reboot(2).

RB_NOSYNC 0x80 Do not sync(2) before halt
RBgSAME 0x100 Rebooting from same kernel
RB_NEW 0x200 Rebooting from new kernel
RB_SAMEROOT 0x400 Use same root after reboot
RB__SAMECON 0x800 Use same console after reboot

The kemel uses internally:

RB__PANIC 0x1000 System is panicing

The following flags are reserved for future use:
RB_ASKNAME OXZOOO Ask for kernel filename
RB_INITNAME 0x4000 Name given for /etc/init

Please note these values conflict with those currently in <sys/reboot.h>, care will be needed when these
values become standard.

9.5.3. Data Common to feinit and feexit
The following fields are common to both the feiniz response packet and the feexit command packet.

howto mode to reboot NDIX in
rootde'v NDIX root device
contigno number of contiguous pages needed by NDIX
pageno number of pages allocated in bitmap
bootme Sintran file containing kernel

9.5.4. Types of condev and rootdev
These variables are passed to utilities as filenames, and to the system call as dev_t (both major and minor
parts).
The values passed to/from the NDIX driver and stored in the sidefile are the 16 bit minor device number.



-35-

10. Xmsg Implementation
Communication between the Xmsg driver in NDIX and the ND-lOO will be through 2 ring buffers. One
for commands from NDIX to the ND-lOO, and another for responses from the ND-lOO to NDIX. This
minimises the number of monitor calls required, and the number of interrupts queued for NDIX.

10.1. Initialisation
This will use an feidev call, similar to that for any other generic device. It is used to determine whether
Xmsg is running in the ND-lOO. The ND-IOO also returns the addresses of the Command and response
buffers.

10.2. Operation
Two fedctl calls will be implemented; XKICK which acts as a "wakeup" on the ND—IOO to indicate that a
command has been placed in an empty ring buffer, and XWBUF which indicates that the command buffer
is full and an interrupt is required when a command has been actioned and there is room for NDIX to
place another command in it. Both these calls should be asynchronous.
The nonnal method of operation when inserting data into a ring buffer will follow the sequence:
0 If the command buffer is full send an federKXWBUF) message to the ND-IOO. Sleep until a

response is received indicating that there is sufficient free space in the command buffer.
- Transfer command data to buffer. Update write pointer.
- If the buffer was empty before the command data was transferred (i.e. Readptr = Writeptr) send an

fedctl(XKICK) message to the ND-lOO.
Occasionally an interrupt will be queued for an Xmsg device. The action that should be taken by NDIX
at this point is as follows: '
. Check the receive buffer for any incoming packets. Read and take the necessary action.
0 Wakeup any task that is waiting to input data to the command buffer.

10.3. Data Areas

The data buffers, command buffer and response buffer should all be situated on segments with no-cache
capability. The command and response buffers are situated on the shared data segment information about
which is passed in the feinit call. All data buffers used by a subdevice must reside within the same physi-
cal memory bank, the address of which is passed during feopen. The data buffers are situated on the
NDIX no~cache segmentT.

10.3.1. Ring Buffers

0
Write pointer (as offset from start of ring buffer) i.e.

2
Read pointer

4
Max pointer

6

Ring Buffer

1024

“t For the layout of this see appendix 1.



-37-

10.3.2. Command Packet

0
Sequence Number Fl

4
Subdevice number

6
Xmsg Function

8
Treg

10
Areg

12
Dreg

14
Xreg

16
The least-significant bit in the sequence number is a flag which indicates whether an interrupt should be
generated when this command has been actioned, if it is set an interrupt is required.

10.3.3. Response Packet

0
Sequence Number

4
Subdevice number

6
Xmsg Function

8
Treg

10
Areg

12
Dreg

14 '
Xreg

16
Current Buffer Addr

18

10.4. Xmsg Commands Supported by NDIXT

1‘ AMSA to provide this.



-33-

11. Error Handling
The feerrm monitor call has been defined to allow UNIX to send a single error code to the ND-100, when
it detects a non-fatal error condition or inconsistency. This call is always synchronous.
The error codes which can be sent in this way are:

Code Meaning

1 Unexpected interrupt on this device
2 Interrupt received for unknown device

Error codes are passed from the ND-IOO to NDIX in the monitor call response packet. The following
codes are defined:

Code Meaning

0150740 Generic Device number out of range
0150741 Generic group not-initialised
0150742 Illegal sub-device number
0150743 Sub-device not open
0150744 Generic device already initialised
0150745 Illegal request type ( monitor call number)
0150746 Xmsg not installed or not running
0150747 sub-device already open
0150750 Not legal NDIX terminal
0150751 Fecall must be synchronous
0150752 Fecall must be asynchronous
0150753 Illegal parameter value in fecall
0150754 Illegal operation code in fecall
0150755 8111 Driver error
0150756 Error from mass storage device in Sintran
0150757 Error in i/o detected by Sysmon
0150760 Byte count not modulo hardware block size
0150761 Byte count not even
0150762 Carrier lost



-39-

APPENDIX 1. Pre-defined AddressesT

Shared data segment

Name Address

Bitmap
IPL record
Clock record
Xmsg command buffer
Xmsg response buffer

NDIX no-cache segment

Name Address

Buffer cache
raw i/o buffers
xmsg data buffers

T To be completed



-40-

APPENDIX 2. Context block (AS DEF in cxb.h - CHECK VALIDITY)
o +———————————————+

I *P l
4 I ——————————————— I * = referred to by NDIX

I L I
8 | ——————————————— I

| *B I
12 I ——————————————— I

I R I
16 I I ——~ —————— +

I I1 I 12 I I3 I I4 I
32 |-~— -I -I --------------- I --------------- I

| A1 I A2 I A3 I A4 I
48 l --------------- I --------------- l --------------- I --------------- I

I El I E2 I E3 I E4 I
64 I --------------- I --------------- I --------------- I --------------- I

I * ST 1 | 3T2 I
72 I ——————————————— I ——————————————— +

I PS |
76 I ——————————————— I

I TOS I
80 I ——————————————— I ———————————————+

I LL I HL I
88 I ——————————————— I ———————————————+

I THA I
92 I---- —I -—— +

I *CED I *CAD I
100 I --------------- l --------------- I -—~ —- —-—+

I NUlIm) | NU2(m) I AM11(m) I AL11(m) |
116 I ——————————————— |———- ~I~~ —— -—-— ---------+

I *OTEl I OTEZ I
124 I ——————————————— I ——————————————— I

I *CTEl I *CTEZ I
132 I ——————————————— | --------------- I

I *MTEl I *M’I‘EZ I
140 I ——————————————— I ——————————————— I

I *‘I‘EMMl I *TEMMZ I
148 I ——————————————— I— I — ——+

I TRAP_P I TRAP_ST I IN_TRAP I REST_p I
164 I ————— I—-- ——+

I PV_INFO I
168 I-~— I ----- —+

I NU3Im) l NU4(m) I NU5(m) NU6(m) I
184 I I ----- -I - -------+

I SVSTl I SVSTZ I
192 I ~~~~~~~ ---I I-- —-— ——+

I I
I SFTWBUFFER[16] I
I I

256 +———————————————————— —- ———————————————— +



APPENDIX 3. Monitor Call Details

-41-



-42-



Table of Contents

Introduction .................................................................................................................................... 1
Memory Configuration & Bootstrapping ....................................................................................... 3
2.1. Physical Memory Configuration ......................................................................................... 3
2.2. Physical Layout of Data Structures @ Bootime ................................................................. 3
2.3. Loading the NDIX program ................................................................................................ 4

2.3.1. Initial PST entries ..................................................................................................... 4
2.3.2. Initial Index Page Settings ....................................................................................... 6
2.3.3. Initial Segment Loading ........................................................................................... 6

2.4. NDIX Kernel Logical Address Space ................................................................................. 7
2.4.1. The NDIX Text Domain .......................................................................................... 7
2.4.2. The NDIX Data Domain .......................................................................................... 8

2.5. Initial Register Contents ...................................................................................................... 10
Inter-Processor Monitor Calls ........................................................................................................ 11
3.1. Making a Monitor Call ........................................................................................................ 11
3.2. NDIX Monitor Call Numbers ............................................................................................. 11
3.3. NDIX Monitor Call Format ................................................................................................ 11

3.3.1. Request Types .......................................................................................................... 13
3.3.2. Request Qualifiers .................................................................................................... 15

Inter-Processor Monitor Calls ........................................................................................................ 16
4.1. Making a Monitor Call ........................................................................................................ 16
4.2. NDIX Monitor Call Numbers ............................................................................................. 16
4.3. NDIX Monitor Call Format ................................................................................................ 16

4.3.1. Request Types .......................................................................................................... 18
4.3.2. Request Qualifiers .................................................................................................... 19

Device Driving ............................................................................................................................... 20
15.1. 1/0 requests .......................................................................................................................... 20

5.1.1. Asynchronous Requests ........................................................................................... 20
5.1.2. Synchronous Requests .............................................................................................. 21
5.1.3. Command and Response Packet Formats ................................................................ 22

5.2. Interrupts .............................................................................................................................. 22
5.2.1. Structure of the IPL Record ..................................................................................... 23
5.2.2. Structure of the Sub-device Descriptor .................................................................... 23

5.3. Device Initialisation and Control ........................................................................................ 24
5.4. Device Numbers & Types ................................................................................................... 24

5.4.1. The NDIX Console ................................,.................................................................. 26
5.4.2. Disk Codes ............................................................................................................... 27



-ii-

5.5. Minor device numbers ......................................................................................................... 27
5.6. Scheduling Considerations within the ND-lOO .................................................................. 28

6. The Clock Interface ........................................................................................................................ 29
6.1. Clock record format ............................................................................................................ 29

7. Traps in NDIX in the ND-500(0) .................................................................................................. 30
7.1. General Traps ...................................................................................................................... 30
7.2. Trap Data ............................................................................................................................. 30

8. SlNTRAN/NDIX Communication ................................................................................................. 31
8.1. Memory Sharing .................................................................................................................. 31
8.2. Scheduling ........................................................................................................................... 31

9. Starting and Stopping NDIX.......................................................................................................... 32
9.1. Loading from Sintran. ........................................................................................................ 32
9.2. Initial NDIX activity ........................................................................................................... 32

9.2.1. Sintran activity if boot fails ..................................................................................... 32
9.3. Normal NDIX termination .................................................................................................. 33

9.3.1. Total Shutdown without Reboot .............................................................................. 33
9.3.2. Shutdown with Reboot of the Same System ........................................................... 33
9.3.3. Shutdown with Reboot of a New System. ............................................................. 34
9.3.4. Sintran Activity on Normal NDIX Termination ...................................................... 34

9.4. Abnormal NDIX termination .............................................................................................. 34
9.4.1. Sintran Activity on Abnormal NDIX Termination .................................................. 34

9.5. Data Structures .................................................................................................................... 34
9.5.1. The Sidefile .............................................................................................................. 34
9.5.2. Reboot Flags ............................................................................................................. 35
9.5.3. Data Common to feinit andfeei ............................................................................ 35
9.5.4. Types of condev and rootdev ................................................................................... 35

10. Xmsg Implementation .................................................................................................................. 36
10.1. Initialisation ....................................................................................................................... 36
10.2. Operation .......................................................................................................... 36
10.3. Data Areas ......................................................................................................................... 36

10.3.1. Ring Buffers ........................................................................................................... 36
10.3.2. Command Packet .................................................................................................... 36
10.3.3. Response Packet ..................................................................................................... 37

10.4. Xmsg Commands Supported by NDIX? .......................................................................... 37
11. Error Handling .............................................................................................................................. 38

APPENDIX 1. Pre-defined Addresses .................................................................................................... 39
APPENDIX 2. Context Block ................................................................................................................. 40
APPENDIX 3. Monitor Call Details ...................................................................................................... 41


