
NDIX Memory Layout.

Mike Bayliss

Operating Systems Group
Norsk Data Ltd.
Benham Valence

Newbury
Berkshire, RG16 8LU

(0635) 35544

ABSTRACT

This note outlines the layout of physical and logical memory established by the
NDIX kernel.

1. Introduction.

The first actions of an NDIX kernel are concerned with changing its memory mapping, and estab—
lishing several new segments. This note describes these actions, and their intended result.

The contents of the segments are also described, together with details of how they are addressed.

2. Logical Memory Layout.

'0
01

02
03
04
'5
06

07

026
027
028
029
030
031

The layout of the kernel text segment is as described in the interface specification.
The layout of the kernel data segment is shown below, the segments in this mapping are:
The NDIX kernel data segment.

The NDIX kernel text segment.

A mapping of the physical ND500(0) memory.
A segment containing additional kernel data.
The page tables for NDIX user processes.
The shadow page tables for NDIX user processes.
A segment shared between the ND100 and NDIX, used for communication between the kernel and
NDIX driver.
A segment containing additional kernel data that is accessed by the NDIOO and which cannot be
cached.
The current NDIX user process text segment

The Physical Segment Table.
The Process Segment for the NDIX kernel.
The NDIX kernel stack segment.
The current NDIX user process data segment.
The current NDIX user process stack segment.

segment
0

NDIX Data 0
0x8000000

NDIX Text 1
0x10000000

Physical Memory 2
0x18000000

System Tables 3
0x20000000

User page tables 4
0x28000000

User page tables (shadow) S
0x30000000

Shared segment 6
0x38000000

System Tables (No-cache) 7
0x40000000

(protect violation) 8-25
0xd0000000

User Text 26
0 xd8 0 O 0 O 0 0

Physical Segment Table 27
0xe0000000

Process Segment 28
0xe8000000

Stack (upage) 29
0xf0000000

User data 30
0xf8000000

User stack 31
Oxffffffff

3. Detailed segment contents

3.1. NDIX Data
This segment is a standard UNIX}L data segment, containing the kemel’s data and bss segments.
It must be noted that for several dynamically allocated data structures, only pointers are found in

this segment.

3.2. NDIX Text
This segment is the executable NDIX.

3.3. Physical Memory
This segment maps the whole of physical memory, including pages allocated to Sintran.

For some dynamically allocated data structures this is the only segment in which the structure actu-
ally appears and is addressable in.

T UNIX is a registered trademark of AT&T in the USA and other countn'es.

3.4. System Tables
This segment contains the following data structures:

usrpi]
process.

forkutl Extra user structure used during forking.
xswaputl

xswap2utl
swaputl Extra user structures used during swapping.

pushutl Extra user structure used during paging.

vmmap A scratch page, used by the memory driver.

mbutl

msgbuf The message buffer. This is 2 pages.

Used by the IPC system. This area is NMBCLUSTERS pages long.

The first level indexes for the user process page tables. This area is 3 pages for each possible

Note that the contents of this segment are scattered throughout physical memory, and may change
physical location while running.

Assuming:

256 processes
NMBCLUSTERS = 256
sizeof (struct user) = 8 pages

the segment layout and addresses are:

KVA

0X18000000

0x18180000

0x18182000

0x18184000

0x18186000

0X18188000

0x1818a000

0X1818a800

0x1820a800

0x1820b800

3.5. User page tables

page tables

uarea

uarea

1131133

uarea

1131138

scratch page

mbuf cluster pages

message buffer

Data Segment
Name

usrpi 1

forkutl

xswaputl

xswapZutl

swaputl

pushutl

vmmap

mbutl

msgbuf

This segment contains the page tables for user processes.

Data Segment
pte *

Usrpil map

Forkmap

Xswapmap

XswapZmap

Swapmap

Pushmap

mmap

Mbmap

msgbufmap

emapmap

3.6. User page tables (shadow)

These are the shodows of the previous segment, and contain disk addresses if the page is invalid, or
access and sharing information.

3.7. Shared segment
This segment consists of data shared between the NDIX kernel and the NDIX driver. It consists of

the following data structures (which are described in the interface specification):

Xmsg command buffer
Xmsg response buffer
IPL record
Clock record
Console input character
Console output character
Console command/response packet
Sub—device descriptors

the segment layout and addresses are:

KVA Data Segment Name

0x3 0 0 0 0 0 O O xmsg__cmd_buf
Xmsg command

buffer
0x30000800 xmsgfiresp_buf

Xmsg response
buffer

0x30001000 iplrec
IPL record

0x30001040 cloclcrec
Clock record

0x30001044 cin
Console input

character
0x30001048 cout

Console output
character

0x3000104c cons_pkt
Console command/

response packet
0 x3 0 0 0 l O 8 0 sub_dev_descrip

Sub-device
descriptors

0x3 0 0 0 8 O 0 0

3.8. System Tables (No-cache)

This segment contains various kernel data structures that are frequently accessed by the NDIOO and
which are therefore not cached. The structures involved are:
xmsgdata Xmsg data buffers. The buffer is 2600 bytes long. There are two buffers for each xmsg

channel.
xmsgpaxam Parameter blocks for xmsg multicalls. These blocks are each 64 bytes long.

rawb
ttyin

ttyout
ttycount

diskpkt

tapepkt

ttyinpkt

ttyoutpkt

xmsgpkt

sintpkt

clockpkt

exitpkt
etinfo

bufpool

bufhd
swapbuf

-5-

Raw I/O buffers. These buffers are 20480 bytes large.
Terminal input queue. This is 2012 bytes long.
Terminal output queue. There is one queue 76 bytes long for each possible terminal.
This is a pair of unsigned shorts for each terminal, the first containing the number of charac-
ters read by the NDIX driver, and the second containing the number of characters read from
the driver buffer by the kernel.
Disk command/response packets. There are 2 command/response packets (union unJJkt, size
22 bytes) for each possible disk.
Tape command/response packets. There are 2 command/response packets for each possible
tape.
Terminal input command/response packets. There are 2 command/response packets for each
possible terminal.
Terminal output command/response packets. There are 2 command/response packets for each
possible terminal.
Xmsg command/response packets. There is space for 2 command/response packets for each
xmsg channel, although only one (total) is used.
Software interrupt command/response packets. There are 2 command/response packets for
the software interrupt.
Clock command/response packet.
A single packet of type struct exit_pkt for the feexiz() call. This is 362 bytes.
Ethernet interface data and buffer. This area is 3086 bytes for each possible ethemet
hardware interface.

Disk buffer pool. This area is sized dynamically at startup.
Disk buffer headers. This area is sized dynamically at startup.
Swap buffer headers. This area is sized dynamically at startup.

Assuming a maximum of:

256 terminals
16 disks
20 tapes
8 xmsg channels
4 ethemet controllers

the segment layout and addresses are:

3.9. User Text

KVA

0x38000000

0x38005000

0x3800f280

0x3800f480

0x3800fc50

0x38014850

0x38014c5c

0x38014flc

0x3801528c

0x38017e8c

0x3801aa8c

0x3801abec

0x3801ac18

Ox3801ac2e

0x3801ad98

0x3801ddd0

0x3801e000

T0x38??????
Ox38??????

0X38??????

rawb

xmsgdata

xmsgparam

ttyin

tryout

ttycount

dm

tapepkt

uyinpkt

ttyoutpkt

xmsgpkt

sintpkt

clockpkt

exitpkt

etinfo

padding

bufpool

bufhd

swapbuf

Data Segment Data Segment
Name Pointer

rawbuf

xdata

xpara

mx_bin

mx_bout

mx.count

disk”pkt

tape_pkt

tty_in_pkt

tty_outvpkt

xmsg.pkt

sint__pkt

clock_pkt

fe_exit_pkt

et_info

buffers

buf

swbuf

This segment is mapped onto the current user process text segment (by copying domain informa-
tion table entries).

T Sized dynamically, dependant on memory configuration.

3.10. Physical Segment Table
This is the ND500(O) PST. The following entries are used by the NDIX kernel:

PST Segment
INDEX

0
.4

. 5000 physical address of PST
Kernel text
Kernel data
Kernel stack
PST
System Tables
Physical Memory
NDIX Process Segment
User process page tables
User process shadow page tables
Shared segment
System Tables (not cached)H

H
O

O
O

Q
Q

U
I-

b
m

w
y
—

I
H

O

Additionally, for each user process, 5 PST slots are required. If n is the domain the user process is run-
ning in (I S n S 255), then the following PST entries are used:

n "‘ 5 + 28 u-area
n * 5 + 29 data
It * 5 + 30 stack
n “‘ 5 + 31 text
n * 5 + 32 process segment (copy)

to map the segments of the user process.

3.11. Process Segment

This segment is the process segment for NDIX. It is set up to allow the mappings described in this
document and the interface specification. For domain 0 (the NDIX kernel) these are:

1' This entry is needed by the NDIX superstructure and is not usable as a valid PST entry.

data / domain
program

program 0
program 31

data 0
data 1
data 2
data 3
data 4
data 5
data 6
data 7
data 26
data 27
data 28
data 29
data 30
data 31

PST

O
H

)—-
I O

O
O

O
M

O
F

-‘
N

1 l
varies

4
7

varies
varies
varies

use
index

kernel text
other machine

kernel data
kernel text
physical memory
system tables
user page tables
shadow user page tables
shared segment
system tables (no-cache)
user text
PST
process segment
kernel stack
user data
user stack

in domain 0 only, the privledged instruction allowed bit is set For other domains, the following capabili-
ties are used:

data /
program

program
program

data
data

3.12. Stack (upage)

domain

H
O

1156

user text
indirect domain 0

user data
user stack

This segment is used as the kemel’s stack segment, and also includes the trap handler vectors and
the current user process’s u-area.

There is one copy of this segment for each process (kernel and user) and the correct segment is
selected by copying PST entries.

The layout of the segment is:

638000000

e8000d00

eBOOOfOO

€8000f20

e8000f5¢

e8000f7c

e8002000

3.13. User data

USCT SD’UCI

trap vectors

frame header (trap)

saved registers

frame header (syscall)

kernel stack

Ktrap

Kstack

This segment is mapped onto the current user process data segment (by copying PST entries).

3.14. User stack

This segment is mapped onto the current user process stack segment (by copying PST entries).

4. Physical memory layout
The initial physical memory layout is as described in the interface specification. The diagram is

repeated here for convienence.

feinit
address

TSB etc.
PST

Data Index Page
Text Index Page
Stack Index Page
PST Index Page
PS Index Page

NDIX Data Segment
Process Segment

NDIX Stack Segment
NDIX Text Segment

Shared seg Index Page
Shared Segment

NDIX Dynamic
sfree

sphys

The area labelled NDIX Dynamic consists of two areas, Kernel Dynamic and User Dynamic.

-10-

5. The Kernel Dynamic area
This area consists of various structures sized and allocated by the NDIX kernel at boot time. The

content of this area is:

xmsgdata
Physbase 8.1.

xmsgparam

rawb
Physbase D.I.

ttyin

Us lma tt out
rp p Sysmap 8.1. y

Forkmap ttycount

Xswapmap disk kt
Sysmap D.I. p

XswapZmap tapepkt

Swapmap ttyinpkt
msgbuf

Pushmap ttyoutpkt

mma xms kt
p Usrmap 8.1. 81?

Mbmap sintpkt

msgbufmap Usrmap D I clockpkt

' ' exitpkt
etinfo

Susrmap S.l.

inode
Susnnap D.I.

file

proc
No Cache S.I.

text

cfree
No Cache D.I.

callout

swa maNo Cache Fixed p p
argmap

bufpool kemelma
No Cache Vary p

bufhd mapil

swapbuf mbmap
System Tables

quota

. dquot
User Dynamic

cmap

-11-

6. User Dynamic Memory
The user dynamic memory is the area allocatable for user processes and is mapped by the NDIX

core map (an array of cmap structures), one entry for each pageframe in the user dynamic area. The fol-
lowing types of entry exist in the core map:

6.1. NDIX free

Pages are marked as type CSYS in the core map and have the bit cfree set if they are not allocated
to any NDIX process. Such pages are candidates for the NDIX memory allocators and will have their
type changed to one of; CTEXT, CSTA CK, CDATA, CUPAGES when allocated.

6.2. NDIX system

Pages are marked as type CSYS in the core map and have the bit 0free clear if they are in use by
the NDIX kernel. Such pages are not candidates for the NDIX memory allocators.

6.3. U-area pages

Pages of type CUPAGES are not candidates for page—out by the NDIX page daemon and change to
type CSYS when the associated process terminates or is swapped out.

6.4. NDIX allocated memory

Pages of type CTEXT, CSTACK and CDATA are candidates for page-out and if paged out or their
associated process terminates or is swapped outT their type is changed to CSYS with cjree set

7. Memory Handcrafting
This section is basically a walk through of machine/machdep.c:szartup(). It differs from the code

in two significant respects, firstly it is readable, and secondly it describes what should be done, not what
is done.

When the kernel is started the memory layout in §4 is complete upto the address sfree. We make
no assumptions about the contents or use of the area labelled TSB. There is however an assumption that
all the areas loaded by Sintran are in the order shown and contiguous.

We will use the area between sfree and sphys ~ 1 assuming that it is our memory exclusively,
except for those areas whose addresses are given to the driver in fecalls. Although sphys is assumed to
be the start of non~existant memory it is not fatal if this is not strictly true.

The call to feiniz() gets the values of sfree and sphys as NDIOO addresses so we need to correct
them by private (the size of the NDlOO + PIOC address spaces).

7.1. Physical Memory Mapping
We now have to go through various contortions to get a mapping of physical memory, starting

from an empty PST slot.

The kernel domain information table is filled in to map data segment 2 through the PST slot (PHY—
SINDEX) reserved for physical memory mapping. We then set the PST slot to point to the first available
page, treating it as a segment of page instead of as page tables. The TSB clear then allows us to address
this page.

Physbase is set in machine/locore.c to be at 0x1000000, the KVA of the start of physical
memory. Since Physbase is declared as an array of characters (h/systm.h) the assignment to pie is setting
pte to point at KVA 0x1000000. This trick is used for the start addresses of many of the kernel seg-
ments, but this explanation will not be repeated!

Since physical memory is always more than li we will always need two levels of indexing to

1’ all associated processes if CTEXT
i If it isn't, shoot the salesman.

-12-

address the whole of physical memory. Each second level page can map NPTEPG (machine/paramh)
pages of memory so we need maxmemlNI’TEPG pages of first level indexes, (rounded up of course!).

We fill in the page of memory at Physbase with pte structures, and the first mappages of these pres
contain the pageframe numbers of the following (currently unused) pages.

Now the PST entry for the physical memory segment is changed so that it will treat the page as an
index page to a single indexed segment instead of as a direct segment. The TSB clear is once again
needed so that the new mappings are seen. Now kernel segment 2 appears to be mappages long, but not
yet initialized.

The next stage is to fill the segment with ptes addressing pagefiames 0 to maxmem.

We then have the (by now familiar) modification to the PST entry so that the segment is now
regarded as a double indexed segment, and the usual TSB clear.

The end result is that all the 5000 memory (except page 0) can now be accessed by the NDIX ker-
nel, simply by adding OxlOOOOO 0 to the address.

7.2. Debugger Assist.
The kernel debuggers all need to be able to simulate the kernel address mappings and as a start to

this process, they need to know where the PST starts in physical memory.

This address is worked out from the PST entry pointing to the PST itself and stored in the kernel
variable pstaddr. This means that debuggers looking at a running system can find the information they
require at a known offset in /dev/kmem (the address of pstaddr since the kernel data segment starts at
KVA 0) and then work on Idev/mem. Alternatively they can work directly on Idev/kmem and let the run-
ning system do the address mappings.

The start address of the PST is also placed in the first location in the PST (which is otherwise unus-
able). This is the start point of a crash dump, so the debuggers can find this one key value easily from a
dump image.

7.3. System Table Mappings.
The system table is used to map various structures that can allocated at potentially changing

memory locations. The handcrafting of segment 3 that we do here is only of the page tables that point to
these structures, we do not allocate memory for the structures themselves yet.

We know that the page tables will need SYSMAPPAGES pages and thus that the segment must be
double indexed. The first stage is therefore to take the next available page and fill it in with ptes pointing
to the following SYSMAPPAGES.

The mapping must then be made valid by filling in the kernel domain information table and the
PST index appropriately. Once again we flush the TSB so we can actually address the new segment.

Now we come to one of the (initially) incomprehensible parts. In the kernel data segment are a set
of struct pte *:

Usrpi 1 map
Forkmap
Xswapmap
XswapZmap
Swapmap
Pushmap
mmap
Mbmap
msgbufmap

which are not initialized at compile time. These are now filled in with physical (in kernel segment 2)
addresses of pics in the pages just allocated and mapped. These pres however, are still invalid, they all
contain pagefrarne numbers of 0.

-13-

The structures which these pres will point to are declared as extern in various header files, and
assigned address in kernel segment 3 at the start of machine/locore.c. Thus other parts of the kernel can
reference these structures via the segment 3 addresses, while memory is allocated as needed by other
parts of the kernel which fill in the pies.

An example of this allocation and filling in occurs immediately, where the last four pages of physi-
cal memory are allocated to the message buffer (strucz msgbuf msgbuf) by filling the pies pointed to by
msgbufinap. The remainder of the kernel then accesses the message buffer via its kernel address
(currently 0x1820a800).

Actually this message buffer allocation is unnecessary, and in the wrong place - it would be far
better at the start of physical memory, so it always makes it to disk when a crash dump is taken.

7.4. User Page Tables.

The next allocation is of page tables (and their shadows) for user processes. This is a Matra addi-
tion, and is only documented in one of their working papers.

Before the page tables can be allocated, they must be sized and since this size is dependant on swap
space we must have run machine/autoconf.c:configure(). There is (inevitably) a complication. Config-
ure() needs to know the root device, which might have to be supplied by the operator, hence we must
print the version information to give the operator knowledge of which system he is actually booting.

Just to confuse you even more, the swap configuration is currently hardwired into each kernel, and
is independant of the root device (this is a bug, io/di.c:disize() should behave correctly).

The allocation of the page tables is essentially the same as the allocation of the system table page
tables above, except the size of the page tables is not known at compile time. The only problem is that
the code for sizing the page tables does not agree with the comment.

7.5. Buffer Sizing
The buffer sizing must be done at this point, since the buffers (currently) reside in no~cache which

we must be able to size before we allocate it.
Note that buffer sizing can be done by a user patching the kernel, a technique that might advisable

when running heavy disk benchmarks.

7.6. No-Cache Segment.

Handcrafting of the no—cache segment is essentially the same as the user (or shadow page tables)
except that we then fill in the page tables to address the pages after the page tables.

The segment consists of two parts, a fixed area of a size known before compilation and then the
area needed for the buffer pool and headers. Note that the rounding factor here is only plus 2, since
MAXBSIZE is a multiple of NBPG.

Given the segment size of ncsize pages, we will need ncsize/NPTEPG second level indexes, so we
fill the next available page to point at that number of following pages.

The second level pages are then filled in to point at the following ncsize pages.
There is just one small complication left. The xmsg paramater and data areas (xmsgdata and

xmsgparam in §3.8) must be in the same Sintran memory bank. A Sintran memory bank is 128K bytes,
so all we do is swap (if necessary) pres in the last level of indexing so that addresses 0x38005000
thru’ 0x3800f47f are on the same bank.

THIS CODE HAS NOT BEEN TESTED YET

7.7. System Data Structures.
A number of system tables are sized at runtime and are potentially user tunable by patching vari-

ables initialized in GENERIC/param.c.
Historical note: the use of sizing these tables by variables rather than constants was originally intro-
duced to avoid excessive rebuilds of everything when say NPROC was changed and as a

-14-

consequence 115(1) broke. Patching to tune systems followed later, mainly by binary vendors.

Access to these tables is normally via pointers which point to addresses in the physical memory
segment, and typically a start and end pointer are both set, although some structures do not require the
end pointer.

The structures concerned are:

start contains size end

inode struct inode ninode inodeNlNODE
file struct file nfile fileNFILE
proc estruct proc nproc procNPROC
text struct text ntext textNTEXT
cfree struct cblock nclist
callout struct callout ncallout
swapmap struct map nswapmap = nproc * 2
argmap struct map ARGMAPSIZE
kemelmap struct map nproc
mapil struct map nproc
mbmap struct map nmbclusters/4
quota sn'uct quota nquota quotaNQUOTA
dquot struct dquot ndquot dquotNDQUOT
cmap struct cmap ncmap ecmap

The start address of the first of these structures is set to the first available page after the pages used
by the no-cache segment. The only tricky point is that before allocation of the amp array, the value of
firstaddr must be recalculated to prevent the core map mapping these tables. Note also that the core map
includes itself in the pages it maps, a fact which is not understood by analyze(8).

After clearing all of the area we have just allocated the three pointers associated with the variable
part of no-cache are initialized, to addresses in the no—cache segment instead of addresses in the physical
segment.

We then make a check to ensure we have some memory left, even though we actually accept an
incredibly low amount without panicing.

The callout table (h/callout.h) is initialized so that each entry points to the next in the table.

A check is made that we aren't trying to use too many processes (in this version each process has
it’s own domain) and we start to initialize the proc table (h/proc.h). The fields set here are an index that
will be used later by sys/vm_mem.c:memall() when it is passed a pointer to a proc structure, the address
of the processes pcb (in ND terminology, the domain information table) and an index into the PST where
this processes u—area will be mapped

We then call sys/vm_mem.c:memini1() to initialize the core map, and reset "maxmem". This latest
resetting of "maxmem" is necessary because we are now working in page clusters rather than pages (how-
ever on the ND-SOOO the cluster size is 1).

After telling the user how much memory he has to play with and how many buffers we’ve allo-
cated, we initialize the resource maps.

8. Cache Handling.
The NDSOOO has a variety of caches, enabled in differing combinations for different CPUs. This

section attempts to explain (briefly) the caches and their impact on NDIX.

-15-

8.1. Theory.

8.1.1. Translation Speedup Buffer.
The Translation Speedup Buffer (TSE) is a cache of logical to physical address mappings. A TSB

lookup is a function of the domain number, cements of the PS register and part of the logical address.
There are two TSBs, one for instruction space and one for data space. They are cleared by the

instructions:

dctsb clear data TSB
pctsb clear text TSB

8.1.2. Memory Caches.

The caches hold logical address contents and are checked before the TSB. The cache lookup is a
function the domain number, contents of the PS register and part of the logical address.

There are two caches, one instruction and one data. They are cleared by the instructions:

dcc clear data cache
pcc clear text cache

The data cache can function in one of two modes, either write-through or write-in cache-only (dirty
cache). In write through mode all writes to the cache are also written to memory but in dirty mode the
data is not written to memory until a special instruction is executed.

The instruction to flush a dirty cache to memory is:

ddirt

8.1.3. PS Register.

Since the cache and TSB lookups index on domain and PS register it is possible to avoid clears by
careful use of the PS register.

The saving is not when executing a user process, since they each have unique domain numbers, but
when the kernel is executing on behalf of a user process. In this case if the kernel uses a different value
in the PS register depending on the domain it was called from then clears are not necessary as the kernel
context switches in domain 0 between running for different user level processes.

The PS register contains the PST index of the page table for the Process Segment so just loading
with arbitary values is not possible. Instead, a slot in the PST is reserved for use as a process segment
for each domain.

THIS CODE HAS NOT BEEN TESTED YET.

8.2. Range Differences.
There are three different NDSOOO processors, although only two are used for NDIX systems. The

type 1 CPU is used only for the ND5200 and has no cache hardware. The type 2 CPU has cache
hardware and is used for the ND5400 through ND5700. The type 3 CPU has an additional booster card
for some address mode calculations, and used in the ND5800.

NDIX is not supplied to run on type 1 CPUs, and type 2 and 3 appear identical in terms of cache
functions.

The range performance is controlled by use of different microcodes which enable different caches.
The differences between CPU models are documented in the ND—SOOO Hardware Description manual on
page 13. The only point to note is that the address cache mentioned there is a subset of the instruction
cache and is transparent above the microcode level.

-l6-

8.3. In Practice.

The NDIX kernel requires to handle the caches for cases that are both obvious and non-obvious.
The qbvious cases are when user processes are loaded, unloaded and mapped into the kernel memory
space .

The non-obvious cases arise when the kernel is manipulating data in user segments, and also
because of the inter-dependancy of the TSB and caches.

8.3.1. Cache Inter-depenancy.

Since a cache clear marks the whole of the cache invalid and forces future references to physical
memory it is cleary necessary for a doc to also carry out a ddirt to get the cache contents back to
memory.

A TSB clear implies that new address mappings have come into effect. Since these new mappings
are governed by page tables the TSB flushes also flush the caches.

Something not quite right here - a pctsb does a pcc, but the page tables are in data.

8.3.2. Why the Kernel Clears Caches.
Consider the following scenarios for examples of why the kernel needs to manipulate the caches.

Remember that a user data segment is accessed via two sets of KVAs, one in the user’s domain and one
in the kernel domain.

8.3.2.1. Write-Through-Cache.
0 The user writes to memory.

0 The data is written into the cache and into physical memory.
a The kernel writes to the same location.

0 The data is written into the cache and into physical memory.

0 But, the two cache writes are at different cache locations since the cache address is a function of
domain number.

0 The user reads back the contents of the location.
0 The read hits the cache and the value the user process wrote to memory is returned.
0 Physical memory however contains the value the kernel wrote.

8.3.2.2. Dirty Cache.
- A user process writes to memory.
0 The data is written to cache, but not to memory.
0 The kernel reads the data.
0 The kernel gets a cache miss and accesses physical memory.

0 The kernel gets wrong data because the correct data is only in the cache.

8.3.3. What Is There Now.

The current cache handling is there because it works, not because it is what we believe should be
there.

The basic starting point was the Release B cache handling which worked on systems with write-
through cache. Initial Release C work was done with cache disabled but TSB enabled. We can therefore
be reasonably confident that all the required TSB handling is in place.

‘I’ If this is not obvious you should not be reading this document. By the way I know of a tower in Paris they're thinking
of junking that I can let you have for a song.

-17-

The next stage was to enable the instruction cache, and such systems continued to work. This left
the remaining work as:
0 handle data cache

0 handle dirty cache
0 remove redundant T58 and cache clears

Cache clears were added until such time as the system could run heavy user loads with a write-
through cache.

Three types of failure were observed:
a) Kernel Page Faults
b) Invalid P registers

c) Invalid context blocks

The first type of fault was consistent and was initially cleared by place cache clears before the
faulting instructions. This left the other two types of faults which appeared to be timing related.

Type b faults happened after an splx() call caused a delayed interrupt to be serviced. This fault
stopped occuring after cache clears were placed at the start of the interrupt handler. Thisfix is almost cer-
tainly wrong - see the code for more comments.

Type c faults appeared to occur after trap() had slept and then returned. Various cache clears in the
trap code reduced the ocurrance of this problem, a final (and sufficent) fix is a cache clear at the system
call entry.

The cache clear at system call entry also allowed the removal of all the clears applied to fix type a
problems.

9. No-cache Segment.
The use of cache as outlined above is not sensible for data used both by the NDlOO and NDSOOO

since all accesses would have to preceeded by ddirties or dccs to ensure both CPUs and all possible
KVAs saw consistent, correct data.

Such data is kept in segments that have their capabilities marked as shared, and are therefore never
cached. The current system contains two such segments one handcrafted by the NDlOO, and one hand-
crafted by the NDSOOO. Allocation of structures to these segements is dependant on when the structures
can be sized and if there addresses are needed before the kernel has hand crafted the second of these seg-
ments.

This section discusses the second of these segments, starting at KVA 0x38 0 00 00 0.

Firstly, the fixed allocation of addresses is wrong, but a truely dynamic allocation is not possible
because the pre—processor cannot use sizeof directives.

Secondly, the allocation of the XMSG areas, and the juggling to provide a single bank for these
areas is confusing and potentially wrong. It will certainly be hard to clear addressing problems in this
area Additionally, the swapping of pres could fragment a structure that would be better contiguous.

Thirdly, the presence of the buffer cache in un-cached memory will degrade the effectivness of this
cache. Tests should be run to find out if it is better to have the disk buffers in cached memory and use
ddirt instructions rather than the current layout.

Looking ahead to DMA to peripherals it is likely that transfers should be triggered out of their own
contiguous address spaces rather than collected by copying. Such an approach would certainly pay for
the pagedaemon.

10. .set Directives.

The use of the .set directive is potentially confusing, and is in the interests of complemess,
explained here.

-13-

The compiler can define a variable, which reserves space for the variable or declare a variable,
which implies space will be allocated elsewhere.

However, the compiler (in conjunction with the linker) can only allocate contiguous areas starting
at location zero. This is clearly not adequate for the kernel, where large numbers of structures must be
allocated at fixed locations, and outside of the area the compiler would use.

The solution is for the variables to be declared extent wherever they are referenced, leaving the
addresses to be found at link time. In nwchine/Iocore.c all such variables have a .set declaration which
results in variable being defined as absolute with the value supplied in the directive.

At link time when an address is required for a variable that is always defined as external except for
an absolute declaration, the address used is the value supplied in the .set directive.

The .set directive should therefore be ragarded as a method of telling the compiler the start address
of a variable, instead of letting it asign an arbitary address.

Table of Contents

1. Introduction. ..
2. Logical Memory Layout. ..
3. Detailed segment contents

3.1. NDIX Data ..
3.2. NDIX Text ...
3.3. Physical Memory ...
3.4. System Tables ...
3.5. User page tables ..
3.6. User page tables (shadow) ..
3.7. Shared segment ..
3.8. System Tables (No-cache) ..
3.9. User Text ...
3.10. Physical Segment Table ..
3.11. Process Segment ..
3.12. Stack (upage) ...
3.13. User data ..
3.14. User stack ..

Physical memory layout ...
5. The Kernel Dynamic area ..
6. User Dynamic Memory ..

6.1. NDIX free ..
6.2. NDIX system ...
6.3. U-area pages ..
6.4. NDIX allocated memory ...

7. Memory Handcrafting ..
7.1. Physical Memory Mapping ...
7.2. Debugger Assist. ..
7.3. System Table Mappings. ..
7.4. User Page Tables. ...
7.5. Buffer Sizing ...
7.6. No«Cache Segment. ..
7.7. System Data Structures. ...

8. Cache Handling. ..
8.1. Theory. ...

8.1.1. Translation Speedup Buffer. ...
8.1.2. Memory Caches. ...

O
O

O
O

O
Q

Q
O

A
A

A
U

J
W

N
N

N
N

H
F

‘
H O

11
11
11
ll
11
11
11
12
12
13
13
13
13
14
15
15
15

-ii-

8.1.3. PS Register. ... 15
8.2. Range Differences. ... 15
8.3. In Practice. .. 16

8.3.1. Cache Inter-depenancy. ... 16
8.3.2. Why the Kernel Clears Caches. .. 16

8.3.2.1. Write-Through—Cache. ... 16
8.3.2.2. Dirty Cache. ... 16

8.3.3. What Is There Now. 16
9. No-cache Segmeng... ... 17
10. .set Directives. ... 17

