NORD -~ 1
REFERENCE MANUAL

NORD - 1
REFERENCE MANUAL

]

e e e e

e,
.

{ NORD - 1 REFERENCE MANUE_IL/
v

Complete instruction repertoire

Date: January 1968

Contents

1 INTRODUCTION

2 SYSTEM ORGANIZATION

2.1 Core memory

2.2 Memory control

2.3 Central processing unit

2.3.1 Register block
2.3.2 Control flip-flops
2.3.3 Arithmetic and control units
2.4 Instruction and data word formats
2.4.1 Instruction word
2.4.2 Data word
.5 Interrupt system
6 Memory Protection system

(a

INSTRUCTION REPERTOIRE

3.1 Memory reference instructions

3.1. Store instructions
Load instructions
Arithmetic and logical instructions
Sequencing instruction
Double wordlength instructions
Floating point instructions
Shift instructions
Arithmetic register operations
Skip instructions
Argument instructions
Bit operation instructions
3.6.1 Skip instructions
3.6.2 Setting of bit instruction
3.6.3 Instructions using the one bit

accunulator

Input-output control
Miscellaneous instructions
3.8.1 Floating point convertion
Transfer to A-register
Transfer from A-register
Control of interrupt system
Programmed stop of the computer

°
a

.

WWwwww
et et pd
U W N

W wwwWw
oY U > W N

°

W w
@ ~J
[eeReolieolioo]

W W W
(200 =R VE I 8

Page
10

11

11
11
11
11
12
13
15
15
15
16
19

21

21
23
23
24
25
25
26
27
29
33
34
35
35
35

35
37
38
38
39
39
40
40

¢

- 10 -

NORD~1 REFERANCE MANUAL

s . R T e e G N o T s o GO U A SR WS N O3 [N X e e S S

1. INTRODUCTION

NORD-1 1s a general purpose stored program digital
computer developed, manufactured and marketed by
A/S NORDATA, Norwegian Data Electronics, Oslio.

The main characteristic of the NORD-1 computer is

its extremely broad instruction repertoire which

also includes floating point arithmetic, its uniaue
interrupt system for real-time and multiprogramming
systems, and its flexible communication with peripheral
equipment. ‘

CORE
MEMORY

z MEMORY RCCESS
< CHARNNELS
MEMORY CONTROL®
% |
% |
CENTRRAL
@ o
@,pzﬁﬁ;‘o&& PROCESSING HiGH SPEED
NEL UNIT I/o DEVICE
g Jo-Bus
Jo-3Us < 3 >
TYPEWRITER[F L ™ /o DEV.
TAPEREADER— (&> /0 DEV, 2
v 1/o-pus

NORD-1 COMPUTER SYSTEM

[

3.1

SYSTEM ORGANIZATION

Core memory

The main storage device is a coincident current ferrite
core memory. The memory size varies from 4096 words to
65536 words. Word length is 16 bits plus parity bit.

The central processing unit operates asynchronous to

the memory timing control and the computer therefore may
accept memories of different speed. The fastest memory
speed which may be efficiently utilized by the central
processing unit is 1 microsec. cycletime.

Memory control

Each memory block has its own memory control. This
memory control permits direct access from 4 different
devices to the memory block. The priority between the
devices will be fixed (wired in priority). One of the
devices is the central processing unit, usually at
lowest priority. Together with one CPU, three data
channels may have access to each memory block. The
data channels are usually connected to such devices as
disc storaqe, magnetic tape storage, line printers or
other innut-outnut devices with high data transfer rate.
When the data channels are operating memory cycles are
stolen from the program running, for each data channel
transfer of a 16 bit word one memory cycle is stolen.
With a 1 us cycle time core store the maximum total
data channel transfer rate is 16.000.000 bits/sec.

The memory control is designed for multiprocessor
systems. Two or more central processing units may be
connected to one or more memory blocks.

Central processing unit

The central processing unit, CPU, controls the execution
of the instructions and the input-output system.
Basically the CPU consists of a register block, control
flip-flops and an arithmetic and control unit.

Register block.

The register block consists of 8 general registers, 4
bus memory reqgisters and 2 priority interrupt control
registers. The CPU registers are 16 bit high-speed,
integrated circuit registers.

The 8 general registers are:

R-register: Address register, this register is not
-accessible by program.

Lol
>

A-register:

D-register:

T-register:

L-register:

X-register:

B-register:

P-register:

- 12 -

This is the main register for arithmetic
and logical operations directly to the
menmory. This register is also used for
input-output communication.

This register is an extension to the
A-register in double precision or floating
point operations. It may be connected to
the A-register during double length shifts.

Temporary register. 1In floating point
instructions it is used to hold the
exponent part.

Link register. The return address after

a subroutine jump is contained in this
register.

Index register. In connection with in-
direct addressing it causes post-indexing.

Base reagister or second index register.
In connection with indirect addressing it
causes pre-indexing.

Program counter, address of current
instruction. This register is controlled
automatically in the normal secuencing or
branching mode. But it is also fully
programcontrolled and its content may be
transferred to or from other registers.

Besides from the R- and P-register all registers are fully
programcontrolled and may be used for other purposes than
those described here.

Two instructions, ROP and SKP, may specify a register whose

content is

always zero.

Control flip-flops.

Six control flip-flops are accessible by program.

These six

C

flip-flops are:

Carry flip-flop. The carry flip~flbp is dynamic
and affected by the instructions ADD, SUB, RADD,
RSUB, COPY, AAA, AAT, AAX, AAB.

Dynamic overflow flip-flop. It is affected by

the instructions ADD, SUB,RADD, RSUB, COPY,
AAA, AAT, AAX, AAB.

Static overflow flin-flop. This flip-flop re-
mains set after an overflow condition until it
is reset by program. It is affected by the
instructions ADD, SUB, RADD, RSUB, AAA, AAT,
AAX, AAB,

- 13 -

Z : Floating point overflow flip-flop. This
flip-flop is static and remains set until it
is reset by program. The Z flip-flop may be
internally connected to an interrupt level
such that an error message routine may be
triggered. It is affected by the instruction
FDV, if division by zero is tried.

K : One bit accumulator. This flip-flop is used

in the BOP, bit operation, instruction to
store temporary one-bit data.

M ¢ Multi shift link flip flop. This flip-flop
is used as temporary storage for vacated bits
in shift instructions in order to ease the
shifting of multiple precision words.

These six flip~flops are fully programcontrolled either
by means of the BOP instruction of by the TRA or TRR sub- R

instructions where all flip-flops may be transferred to
and from the A-register.

It is only the automatic affection in connection with carry
and overflow that are described here.

2.3.3 Arithmetic and control units.

Figure 1 shows a block diagram of the central processing
unit. The address and index computations are performed in
a special address arithmetic unit. All programmed arith-
metic and logical operations are performed in a 16 bit
high-speed arithmetic unit. Therefore all such operations
may be performed on any of the registers.

The control unit contains the necessary logic circuitry to
access data and instruction words, to modify instruction
addresses, to perform arithmetic and logical operations
and to control the interrupt system.

FROM MEMORY

MGINTENANCE
/\//"T/?/yEL - ”‘“”"’)[/NST!QUCT/ON /?E&{arg,qj

0S¢ f;{ TIME COUNTER M

Lol CycLE counTER Jo—t

{5#/!—'7‘ COUNTER M REGI/STERS
CONTROL > %

INT. DETELT REG. ¥ _

INT. CONTROL REG. t& 106G /G RRITHMETIC
v

UCinT LEveaL iy
0PERATORS ” 2

PRNEL.

ki
ECONT&@L Fupnﬂom]

CENTRRL PROCESSING Ln T

F

MEMORY BUFFER

- 14 -

%

NETRUCTION REGISTER

%

!NTERRU%

éTHTUS%

OPR.R&%

< INTERRUPT
“ RDDRESY
RDRESS ARITHMETIC 6
E RODRESS
R-REGISTER I >
P-REGISTER >
B-REGISTER b
X-REGISTER %
RF-RZGISTER e
D-REGISTER B
T-REGISTER N
L-REGIGTER b
v - MEMORY H
Eje
? 7 —
G
RRITHMETIC
: =DATA

GENERAL REGISTERS AND ARITHMETIC

- 15 =

2.4 Instruction and data word formats

2.4.1 Instruction word.

8 { OP.code X 11 B Displacenent

15 11 109 8 7 0

One instruction word always accupies one location, 16 bits,
of core memory. The operation code occupies the five most
significant bits (11 - 15), and specifies one of 32
instructions.

For memory reference instructions bits 1 - 10 are used to

specify the address of the instruction. The instructions

which do not have an address, use these bits to further
specifications. Bits 8, 9 and 10, called B, I and X, are

used to control the address computation. B

The displacement is an 8 bit signed number ranging from
-128 to +127, using two's complement for negative numbers
and sign extension.

« 2,4.2 Data word.

Three different types of data words exist:

a) Single length numbers: a 16 bit number which occupies !
one memory location. Representation of negative
numbers are in 2's complement. Range as integers:
~ 32768 &£ fx] £32767.

b) Double length numbers: a 32 bit number which occupies
two consecutive locations in memory, and where
negative numbers also are in 2's complement.

n n+1l

i

Most. sign, least sign.
31 & 16 15 D 0

A double word is always referred to by the address of
its most significant part. Normally a double word is
transferred to the registers so that the most signifi-
cant part is contained in the A-register and the least
significant in the D-register. Range as integers:

~ 2 147 483 648 & [x] < 2 147 483 647.

c) Floating point numbers: The data format of floating
point words is 32 bits mantissa magnitude, one bit
for the sign of the number and 15 bits for a signed
exponent. The mantissa is always normalized,

0,5 mantissa <1, for all non zero numbers bit 31
equals one. ?%e exponent base is 2, the exponent is
biased with 277, so that a standardized floating zero
contains zero in all 48 bits,

In core store one floating point data word occupies
three 16 bit core locations, which are addressed by
the address of the exponent part.

L

n exponent and sign
ntl most Slqn;fic&wt part of mantissa
n+2 least significant part of mantissa

Tn CPU registers bits 0 - 15 of the mantissa i1s in the
D-register, bits 16 31 in the A~register and

bits 32 -~ 47, exponent and sign, in the T- ~reaqgister.
These three registers together are defined as the
floating accumulator.

i

%

9! akl k2
ﬁ' Exponent Man- tissa
4 T 32 31 A 16 15 D 0

The accuracy is 32 bits or sporoximately 10 decimal
digits, any integer up Lo ? has an exactly floating
point representation.

The range 1s

2710389 .05 ¢[xi< 276283 7 and 2em
oxr

1 - >3 5 2 o]

?O 4930 <%X§“/ ;OQ;QQ

Any other data word format than those three described
here may be programmed. These three data word formats
have Offeqp0ﬁ01mﬁ instructions which make these
formats sy and natural to use. It is also rather
easy to nrocram data word formats using one bit data
word (logical variables) and 8 bits data word
(character byte).

Interrupt system

The NORD-1 commuf@? has a priority interrupt system with
16 different ty levels. The interrupt system has
been desiqnﬂa zov Laalw time applications and multi-
programming systems, The 16 different priority levels

may be trigcered elther from Gszrnal signals or from
program. Some of the levels are also triggered by control
signals from the central ixccegsor? for instance if the
memory protection system is violated or if a floating
DOJPKW&ﬂStluCtlo causes overflow. External interrupt re-
quest signals may be grouped and connected to the same
interrupt level, the priority between interrupt requests
on the same level 1is then determined by program.

When the computer makes a transfer from one level to another
the content of all seven central registers and the setting
of the status flin-flops are automatic dliy saved in
1locations in core memory which are associated with the

level which was interrupted. Before the new level is
entered the seven central recisters and the status flip
flops are loaded from locations in Core memory which

- 17 -

again are associated with the level now to be entered.
This automatic saving and unsavinag of all the programmable

< reqisters and flip-flops make multiprogramming extremely
easy, and the programs on the different levels may be
completely independent of each other.

SET
CLEAR

)

—— CHRANGE
- ¥ PK # » LEVEL
G r) S| GNRL
3 ¢

i
11

2 ENCODER "

&

To A-REGISTER guegp

FROM
e
R-REGISTER

PE

TO RA-REGISTER &

k

FROM —» pD RESET

T

INTERNAL/ EXTERNAL
INTERRUPT REGISTER

@._.UH!T
INSTRULTION

PRIORITY INTERRUPT SYSTEM

- 18 -

The interrupt system is controlled from two 16 bit
registers where each level is controlled from one bit in
cach of the two registers.

The two registers are:

PID Priority interrupt detect
PIE Priority interrupnt enable

Both registers are programcontrolled, see section 3.83,
the setting of individual bits in the PID register is
also for some predetermined levels controlled by wired
in interrupt reguests,

The PID register is used to detect and hold an interrupt
request. Each individual bit may be set either by
internal or external interrupt requests or by program.
Usually individual bits in PID are automatically reset
when the interrupt requests have been processed. A
WAIT instruction, "give up prioritv", causes the bit in
the PID register which corresponds to the level now
operating to be reset.

The PIE register is used to enable the different levels.
Any interrupt level can only have its corresponding program
operating if the corresponding bit in PIE is a one. The
PIE register is controlled only by program. Because of the
automatic saving and unsaving of all register and status
information when changing from one level to another, it 1is
possible to disenable an interrupt level for a while, and
enable it afterwards regardless which levels have been
operating in the meantime.

The interrupt levels are numbered from 0 until 15, where
level number 15 has the highest priority. Associated with
each level is a corresponding program. At any time the
program with the highest priority is running. The highest
priority is determined as the highest level which has a one
in the corresponding bits both in the PID and the PIE
register.

A change from a lower to a hicher nriority level is usually
caused by an interrupt reguest (internal, external or
programmed reguest). A change rrom a higher to a lower
priority level usually takes place when the higher level
program gives up its priority (the WAIT instruction causes
the corresponding bit in PID to be reset).

In core memory each level is associated with one location
called level-pointer. The level-pointer gives the address
of the corresponding level~head. Each level-head consists
of 8 consecutive locations which may then be located
anywhere in core memory. The level-head is used to hold
the content of the seven central registers and the status
information when the program on the corresponding level is
not running.

- 19 -

Whenever a program is interrupted the register and status
are saved in the level-head corresponding to this program,
then a new level-pointer is chosen and the registers and
status are loaded from the level-head which corresponds
to the new level-pointer. The total time involved when
changing from one level to another is 32 memory cycles.

Memory protection system

The NORD-1 protection system provides operation protec-
tion for input/output instructions, interrupt control in-
structions, jump instructions and memory write instruc-
tions. Input/output and interrupt control instructions
can be executed from protected area only, and memory in-
structions in unprotected area may write in unprotected
area only. Jump from unprotected to protected area is
not permitted. Any instructions violating the protection
rules will produce interrupt on a specified level. 1In
machines without a priority interrupt system the illegal
instruction will be egual to a WAIT instruction.

The standard protection system divides the core memory
into two equal parts, one protected area (upper half) and
one unprotected area (lower half).

An optional expansion of the protection system which de-
vides the memory into 16 equal parts is also provided.

The protection of individual blocks of core memory is
controlled by a 16 bit register. With 4096 words in the
memory one block is a region of 256 consecutive locations,
and with a 16K memory one block is a region of 1024 con-
secutive locations. A protection bit of 0 designates an
unprotected memory block and a protection bit of one
designates a protected block.

The protection register can be loaded from the A-register
with the instructions MCL, masked clear, or MST, masked
set, instructions which of course are privileged (sub-
instructions of RTR).

Operation of the protection system is under control of
the PROTECT switch on the operators panel. If the pro-
tection system is operative the following rules apply:

1. The privileged instructions IOT, TRR, MCL, MST,
WATT, ION and IOF can be executed only if they are
accessed from protected memory. If a privileged

instruction is accessed from unprotected memory,
the instruction is not executed; instead, the
protection violation interrupt level is triggered.

- 20 -

If a jump-instruction or ROP DP or BOP DP is
accessed from unprotected memory and the effective
new address 1s in protected memory, the instruction
is not executed; instead, the protection violation
interrupt level is triggered.

The instructions STZ, STT, STA, STX, STD, STF and
MIN can be used to alter protected memory only if
the instruction is accessed from protected memory.
If an attempt is made to alter protected memory
with an instruction accessed from unprotected
memory, the operation is not performed; instcad
the protection violation interrupt level is
triggered.

3.1

- 21 -

INSTRUCTION REPERTOIRE

Memory reference instructions

In the instruction word, 1l bits are used to specify the
address, 3 address mode bits, and an 8 bit signed displace-
ment using two's complement for negative numbers and sign
extension.

15 1110 9 8 7 0

OP.Code X |I |B Displacement

NORD-1 uses a relative addressing system, which means that
the address is specified relative to the content of the
Program counter, or relative to the content of the B- or
X-register.

Bits 8, 9, 10 called B, I, X, are used to specify the
address mode,

If B, I, and X all are zero, the normal relative addreséing
mode is specified, the effective address equals the content
of the Program counter plus the displacement.

The displacement may consist of a number ranging from,
- 128 to + 127, therefore this addressing mode gives a
dynamic range for directly addressing 128 locations
backwards and 127 locations forwards.

Otherwise the B, I and X bits are decoded as follows:

B=0 means the address is relative to the Program counter
(address of current instruction).

If B=0, X=1 and I=0, this is decoded in a special way
giving the address only relative to the X-register.

B=1 means the address is relative to the content of the
B-register, also called preindexing. The indexing by B
takes place before a possible indirect addressing.

I=1 specifies indirect addressing.

There is only one level of indirect addressing.

X=1 specifies address modification by X, also called post
indexing, which takes place after the indirect addressing.

The address computation is summarized in Table 1. The
symbols used are defined as follows:

X Bit 10 of the instruction
I Bit 9 of the instruction
B Bit 8 of the instruction

D Content of bits 0 - 7 of the instruction
(displacement)

(X) Content of the X-register

(B) Content of the B-register

(P) Content of the P-register

() Means content of the recgister or word
B IX Mneumonic Effective address
000 (P) I

001 X (X) -,D

010 I ((P) £ D)

011 I,X ((P)_ - D) + (X)
100 /B (B) £ D

1-0 1 B0 ,X (B) =D+ {(X)
110 /B T ((B) 2 D)

111 ,B I,X ((B) = D) + (X)

Table 1 Addressing modes

The instruction CJP, conditional jump, uses B, I and X
to specify the jump condition, see section 3.1.4.

In the followina a short description of each memory
reference instruction is given. The same mneumonics as

usced in the assembly languaage, are specified. Tor each
instruction the registers and indicators that can be
affected by the instruction are listed. The execution

time of each instruction is specified in memory cycles
(mc) .

If indirect addressing is specified, an additional memory
cycle is required.

The following abbreviations are used in the descriptions:

A A-register

D D-register

P Program counter

X X-register

T T-register

L L-register

B B-register

EL Effective location

EW Effective word, or (EL)

C Carry indicator

0 Dynamic overflow indicator

0] Static overflow indicator

Z Floatinag point overflow indicator
me memory cycle

S micro-second

1.

Store instructions

STZ Store zero.

The effective location is cleared.
Affected: (EL) Time 2 mc

STA Store A-register.

The content of the A-register is stored in the effective
location.
Affected: (EL) Time 2 mc

STT Store T-register.

The content of the T-register is stored in the effective
location.

Affected: (EL) Time 2 mc q@

5TX Store X-register.

The content of the X-register is stored in the effective
location. The address of this instruction may be modified
by the content of the X-register.

Affected: (EL) Time 2 mc

MIN Increment memory and skip if zero.
Effective word is read and incremented by one and then
restored in the effective location. If the result

becomes zero, the next instruction is skipned.
Affected: (EL), (P) Time 3 mc

Load instructions

LDA Load A-register. o
The effective word is loaded into the A-register.

Affected: (A) Time 2 mc

LDT Load T-register.

The effective word is loaded into the T-register.

Affected: (T) Time 2 mc

LDX Load X-register.

The effective word is loaded into the X-registex. The
address of this instruction may be modified by the
previous content of the X-register.

Affected: (X) Time 2 mc

- 24 -

Arithmetical and logical instructions

ADD Add to A-register.

The effective word is added to the A-register with the
result in the A-register. The carry indicator is set

to 1 if a carry occurs from the sign bit position of the
adder, otherwise the carry indicator is reset to 0.

If the signs of the two operands are equal but the sign
of the result is different, overflow has occurred, and
both the dynamic-~ and static overflow indicators are set
to one, If the condition for overflow does not exist,
the dynamic overflow indicator is reset to 0, while the
static overflow indicator is left unchanged. The static
overflow indicxtor is automatically reset when sensed

by a skip instruction (see BOP).

Affected: Ay, C, O, © Time 2 mc

SUB Subtract from A-register.

The two's complement of the effective word is formed and

added to the content of the A~register with the result in
the A-register. The same rules as for ADD apply for the

setting of the overflow and carry indicators.

Affected: (n), C, 0, O Time 2 mc

AND Logical and.

The logical product of the effective word and the content
of the A-register is formed, with the result in the

A register. The logical product contains a 1 in ecach bit
position for which there is a corresponding 1 in both the
A-register and the effective word, otherwise the bit
position contains a zero.

Affected: (A) Time 2 mc

ORA Logical inclusive or.

Logic inclusive or is formed between the effective word
and the content of the A-recister, with the result in the
A-register. Logic inclusive or contains a zero in each
bit position for which there is a corresponding zero in
both the A-register and the effective word, otherwise the
hit position contains a 1. :

Affected: (A) Time 2 mc

MPY Multiply integer.

The effective word and the A-register is multiplied and
the result is placed in the A-register. Both numbers
are regarded as signed integers and the result as a

16 bit signed integer.

Affected: (A) Time 2 mc + 6 us

3.

1.

4

Seguencing instructions

JMP Jump

The effective address is loaded into the program counter,
and the next instruction is taken from the effective
address of the JMP instruction.

Affected: (P) Time 1 mc

JPL Transfer P to L and jump.

The content of the program counter is transferred to the
L-register, the effective address is loaded into the
program counter, and the next instruction is taken from
the effective address of the JPL instruction.

Affected: (p), (L) Time 1 mc

CJp Conditional jump

Bits B, I and X are used to specify one of 8 jump
conditions. If specified condition becomes true the
displacement is added to the program counter and a jump
relative current location takes place. The range is

128 locations backwards and 127 locations forwards. If
specified condition is false no jump takes place.
Affected: (P) Time 1 mc

The eight jump conditions are:

JAP Jump if A-register positive, A bit 15 = 0.
JAN Jump if A-register negative, A bit 15 = 1.
JAZ Jump if A-register zero.

JAF Jump if A-register filled (not zero).

JXN Jump if X negative, X bit 15 = 1.

JXZ Jump if X zero.

JpC Jump if X positive and count.

X is incremented by one, and if X bit 15
equals zero after the incrementations, the
jump takes place.

JNC Jump i1f X negative and count.

X is incremented by one, if then X bit 15
equals one, the jump takes place.

A conditional jump instruction must be specified by means
of the 8 mneumonics listed above. It is illegal to specify
CJP followed by any combination of ,B I and ,X.

Double wordlength instructions

STD Store doubleword.

The content of the A-register is stored into the effective
location, and the content of the D-register is stored into

i

A - 26 -

T

the effective locatioﬁ plus one.
Affected: (EL), (EL+1) Time 3 mc

1L.DD 1,0ad doubleword.

The content of the effective location is loaded into the
A-register, and the content of the effective location
plus one is loaded into the D-register.

Affected: (p), (D) Time 3 mc

s

Floating point instructions

A floating point word consists of 48 bits. The floating
accumulator consists of the three registers, T, A, D
where the expor.ent is contained in the T-register, the
most significant part of the mantissa in the A-register
and the least significant part of the mantissa in the
D-register.

STF Store floating accumulator.

The content of the floating accumulator is stored in
three memorv locations, starting with exponent part in
effective location.

Affected: (EL), (EL+1), (EL+2) Time 4 mc

LDF Load floating accumulator.

The content of the effective location and the two follow=-
ing locations are loaded into the floating accumulator.
Affected: (Ty, (), (D) Time 4 mc

FAD Add to floating accumulator.

The content of the effective location and the two follow-

ing locations are added to the floating accumulator.

Affected: (ry, (A), (D) Time minimum 4mc+ 6ius
Time maximum 4mc+30ps

FSB subtract from floating accumulator.

The content of the effective location and the twe follcow-
ing locations are subtracted from the floating accumulator.
Affected: (T), (A), (D) Time minimum 4mc+ 6us

Time maximum 4mc+30ps

FMU Multiply floating accumulator.

The content of the floating accumulator is multiplied
with the number in the effective floating word locations.
Result in floating accumulator.

Affected: (Ty, (&), (D) Time 4 mc + 28 ps

3.2

- 27 -

FDV Divide floating accumulator.

The content of the floating accumulator is divided by the
number in the effective floating word locations. Result
in floating accumulator. If division by zero is tried
the floating point overflow indicator 1s set to one.

This indicator is static and remains set until sensed

by a skip instruction (see BOP).

Affected: (y, A, (D), 2 Time 4 mc + 28 us

chift instructions

SHIFT COUNT

N Q
OP.Code 3] &
SHT NS &\ } N
15 11 10 9 8 7 5 0
SHT Shift.
Single shifts Time lmc + 0,4x Nps
Double shifts Time lmc + 0,8% Nus

The shift instruction uses the address bits to specify
the type and the number of shifts to be performed.

N is a sioned number which specifies shift direction
and number of shifts.

N > 0, bit 5
N < O, bit 5

0: shift left
1: shift right

i

Maximum number of shifts is 31 left shifts and 32 right
shifts.

Bit 9 and 10 specify the type of shift operation. The
decoding is as follows:

Bit 10 Bit 9 Mneumonic

0 0 Arithmetic shift. During right
shifts the signbit (bit 15) is
extended during the shifting,
in left shifts zeros are fed
into vacated bit positions.

0 1 ROT Rotational shift. 1In single re-

gister shifts bit 0 is connected
to bit 15, in double shifts bit
0 of the D-register is connected
to bit 15 of the A-register.
Only left rotate shift is pos-
sible. :

0 ZIN Zero end input.

LIN Link end input. Every shift
instruction causes the last bit
which is vacated to be con-
tained in the M, multi shift

T ———

- 2B -

link flip-flop, this may then
be used as end input for the
next shift instruction,

Bit 7 and 8 specify the register(s) to be shifted. The
decoding is as follows

Bit 8 Rit 7 Mneumonic

0 0 SHT Shift the T-register
0 1 SHD Shift the D-register
1 0 SHA Shift the A-register
1 1 SAD Shift the A- and D-registers

connected. Bit 0 of the A-
register is connected to bit
15 of the D-register.

Only the A, T and D-registers may be shifted, if any
other register is to be shifted, its content must first
be placed in the A&, T or D-register.

If no shift direction is specified, left shift is assumed.

The number of shifts is interpreted by the assembler as
an octal number.

A right shift may be specified either by the correct 6
bits negative shift count or by writina the mneumonic
code SHR followed by the positive number of right shifts.
A shift instruction to shift the accumulator 3 positions

to the right, may be specified by one of the following
identical instructions.

SHA 75
SHA 100-3
SHA SHR 3

In a right shift nothing should be written between the
SHR mneumonic and the number of right shifts (a space to
distinguish between SHR and the number is necessary).

SHR must be the last mncumonic used in the instruction.

Some examples of correctly specified shift instructions:
SAD 10

Shift the A- and D-register connected 8 positions
(octal 10) left.

SHT ROT 6
Rotate the T-register 6 places to the left.
SAD ROT 20

Shift the connected A~ and D-register 16 positions to the
left. Rotate shift is specified, which in this case will
cause the content of the A~ and D-register to be ex-
changed. The same effect may be obtained by means of a
SWAP SA DD instruction (see ROP instruction).

SHD ZIN SHR 2

Shift the D-register two places to the right, zeros are
fed into the right end during the shifting. Bit 15 and
14 in the D-register will become zero.

3.3

Arithmetic register onerations

OP.CODE
ROP RADf C | I [CMICLY S D
15 1110 9 8 7 65 3 2 0
ROP Register operation. Time 1 mc

The ROP instruction specifies operations between any two
general registers.

The instruction decodes bit 0 - 10 as follows:

Bit 0 - 2 specifies one out of 7 registers to be the
destination register. The destination register will be
loaded with the result of the ROP instruction.

D =0 is a no operation instruction.

Bit 3 - 5 specifies one out of 8 registers which contains
the value to be used as the source register operand.

S =0 oroduces a source value equals zero.
CLD = 1l: Clear destination register before operation. If
the source and the destination register is the

same, the reaister as source is not cleared.

CM1

|
—
..

Usc complement (one's complement) of source
register as operand. The source register remains
unchanged.

Bit 8 and 9 are decoded in two different ways, dependent
on the RAD-bit being zero or a one.

RAD = 1: Add source to destination.

When RAD = 1, bit C and I are decoded as follows:

C =

1 0: Also add old carry to destination, ADC
Cc =0

1: Also add 1 to destination, AD1

7
14

i

I
I
It is not possible to both add previous carry and to add
1 in the same ROP instruction. (If it is tried, only

1 will be added independent of the status of the carry
flip-flop).

RAD = 0: Binary register operations.
The C and I bits are decoded as follows:

C,I:=:0,0 Register swap, destination and source exchanaed,
SWAD

Logical and . RAND

Logical exclusive or, REXO

Logical inclusive or, RORA

- O
= O

- 30 -

If RAD = 1, the overflow and carry indicators are set after
the same rules as applied for ADD, if RAD = 0, the overflow
and carry indicators remain unchanged.

The source registers are specified as follows:

SD D-register as source
SP Program counter as source
SB B-register as source
SL L-register as source
SA A-register as source
ST T-register ~as source
SX X~register as source

If no source register is specified, zero will be taken as
source register.

The destination registers are specified as follows:

DD D-register as destination
DP Program counter as destination
DB B-register as destination
DL L-register as destination
DA A-register as destination
DT T-register as destination
DX X-register as destination

The following groups of IOP mneumonics are mutually
exclusive, i.e. only one may be used in a ROP instruction.

(sb, sp, SB, SL, SA, ST, SX)
Only one source register must be specified.
(bb, DP, DB, DL, DA, DT, DX)
Only one destination register must be specified.
(ADC, AD1)
Both 1 and old carry can not be added in the same instruction
(RADD, RSUB, SWAP, RAND, REXO, RORA, COPY).
Only one type of operation must be specified.
(ADC, AD1l, SWAP, RAND, REXO, RORA)

Add 1 or add carry may not be used together with the
binary register operations.

The recommended way to specify ROP instructions is to use
the following mneumonics which will be correctly trans-
lated by the assembly language.

%

- 3] -

RADD, D+S =D Register addition
RSUB, D-S »D Register subtraction
RAND, b+« S D Register logical and
RORA, D+8S =D Register logical or
REXO’, D&S »D Register logical exclusive or
- .
SWAP, b S Register exchange
S »D
COPY, S »D Register transfer

Note that the ROP mneumonic is included in the above
mentioned mneumonics.

The assembly language will also permit use of the following
combined mneumonics.

cM2 = CM1 AD1 Two's complement

EXIT = COPY SL DP Return from subroutine
RCLR = COPY Register clear

RINC = COPY AD1 Register increment
RDCR = COPY CM1 Register decrement

The mneumonics RCLR, RINC and RDCR should be followed only
by the destination register specification.

Some examples of use of the ROP instruction.
RADD SA DX

The content of the A-register and X-register is added,
with the result in the X-register.

Cory CM2 SA DA
Complement (2' complement) the A-register.
RSUB ST DB

The content of the T-register is subtracted from the
content of the B-register, with the result in the
B-register.,

RINC DX
The X-register is incremented by one.

RDCR DL

The L-register is decremented by one. (Orne's comnlement
of zero equals -1 in two's complement).

RCLR DT
T-register is cleared.
RCLR AD1 DX
X-register is set equal to one.
RCLR CM1 DB

B-register is set equal to minus one.

COPY SX DT
The content of the X-register is copied into the T-register.
SWAP SA DA

The content of the A-register and the D-register is
exchanged.

RAND SL DX

Logical and is formed between the content of the L-register
and the X-register, with the result in the X-register.

Sore short programs using ROP instructions.

COoPY =~ CM2 . SD DD
copryY cMl ADC SA DA

The two's complement of the 32 bit doubleword in A and D
is formed.

LDD PER

SWAP SA DD

ADD OLA+1

SWAP SA DD

COoPrY ADC SA DA
ADD OLA

The two double wordlength numbers PER and OLA are added
together, with the result in the A- and D-registers.

JPL SUBR
ERR, WAIT
NORM,
SUBR, LDA OLA
SUB PER '
SKP IF DA EOL 0
EXIT $ ERROR EXIT
EXIT aD1 $ NORMAL EXIT

Subroutine jump, and return from subroutine to main
program.

The JPL instruction will place the address of the WAIT
instruction into the L-register. (When JPL is executed
the Program Counter points to the address after this
instruction.)

The subroutine SUBR has two exits, one to the location
immediately following the jump (EXIT), which in this case
is an error exit, and one to the location two addresses
after the jump.

A

3.4

Skin instructions

NOT GRE
OP.Code
SKP I |C S D
15 11 10 9 5 3 2 0
SKp Skip next instruction if spe-
cified condition is true. Time 1 mc

The skip instruction makes it possible to test the
relationship between any two general registers.

The decoding 1s as follows:

I = 1: Invert skip condition , NOT
c = 0: Test condition = , EQL
C = 1: Test condition > , GRE

The S and D field specifies the two registers to be
compared and tested.

The arithmetic expression D - S is tested, where D stands
for one out of 7 general registers, and S is one out of the
7 general registers or zero.

The D and S registers are specified using the same
mneumonics as the ROP instruction, see section 3.3.

If S = 0, the destination register is compared against

zero. Only one destination register may be compared

against only one source register in the same SKP instruction.

If D = 0, the instruction is a no operation.

I1f the skip condition is false, the instruction is a no
operation.

Because of the great flexibility of the SKP instruction,
it may be found difficult to use this flexibility.
Therefore, the programmer is advised to use the following
format when specifying a SKP instruction.

a) The comparison should be specified as follows:
= EOL (Equal, C =20, I=0)
% UEBO (Not equal, C=20, I-=1)
Z GRE (Greater or equal C =1, I = 0)
< LsT (Less, C 1, I =1)

b) The destination (D) register should be specified before
the source (S) register.

c¢) The mneumonic IF and the number 0, which both have the
value zero, may be used freely to obtain easy
readability.

SKP IF DL EQL 0 Skip if L = 0
SKP IF DT LST 0 Skip if T < 0
SKP TP DD GRE SA Skip if D 2 A
SKP 1P DB LST SX Skip 1f B< X

Argument instructions

Time 1 mc

Bits B, I and X are used to specify one of 8 argument
instructions. All these instructions use the displacement
part of the instruction as a signed number ranging from

= 128 until 127. This number is either placed in or

added to the specified register.

The eight argument instructions are

SAA Set argument to A-register
AAA Add argument to A-register
SAX Set argument to X-register
AAX Add argument to X-register
SAT Set argument to T-register
AAT Add argument to T-register
SAB Set argument to B-reagister
NAD Add argument to B-register

An argument instruction should be specified by means of
one of the eight mneumonics listed above. It is illegal
to specify ARG followed by any combination of ,B I and X.

Examples of argument instructions.

SAT 13

Set the cnntent of the T-register equal to 13 (octal).
Bits 8 - 15 will become zero.

SAD - 26

Scet the content of the p-register equal to - 26 (octal).
Bits ¢ - 15 will become one, sign extension.

FAVAD 3

Add 3 tolphe content of the X-register. The addition is
modulo 277

FAVAVAN - 6

Subtract 6 from the content of the A-register {(modulo 215).

SAA 240

The content of the A-register will be 177640_. after the

8
execution of this instruction (sign extension).
S/w\/j\. # ﬂ A
10T SKA ACT PNT

JMP x - 1

Program to print the letter A.

- 35 -

In an add argument instruction the carry and overflow
indicatovas are aet according to the sane rules as
applicd for the ADD-instruction, see scction A,1,14,

Bit operation instructions

BOP Sub.instr.? B D
15 11 10 76 3 0
BOP Bit operation Time 1 mc

The BOP instruction specifies operations on a single bit
in one of the seven general registers, if D # 0.

0 = 0 together with the number in B specify operations on
one of the program controllable status or control
flip-flops (carry and overflow indicators).

For register operations B defines the bit in the register
to be manipulated, B = 0 is the rightmost bit and

B = 170 (octal) is the leftmost bit. The register is
specifiecd by mecans of the same mneumonics as used in

the ROP and SKP instructions, sce section 3.3.

The BOP instruction also uses a one bit "accumulator"
register, K, to hold temporarv results.

16 different subinstructions are available in the BOP
instruction,

In the following description B means the bit specified
by D (register) and B (bit-number).

Skip instructions,

Four subinstructions are available to test the settina
of the specifiecd bit.

BSKD 4RO Skip next instruction if
BSKD ONE Skip next instruction if
BSKD BCI1 Skip next instruction if
BSKp BAC Skip next instruction if

[EsJNes IR vo Rl s}
Il
B O

{
=

Setting of bit instruction.

Four subinstructions are available to set the specified bit,

BSDT ZRO 0+ B
BSET ONE 1 - B
BsET BCM k= B, complement bit
BSET BAC K= B

Instructions using the one bit accumulatcr.

Eight subinstructions are available to specify operations
between the specified bit and the K, one bit register.

BSTA K- B, 0= K Store and clear

BSTC Ky? B, 1=K EZEre complement and
BLDA B+ K, Load

BLDC B K , Load complement

BANC Bd'K = K Logic and complement
BORC BO+K - K Logic or complement
BAND (B-K) = K Logic and

BORA (B+K) = K Logic or

When the carry -and overflow indicators are tested by
means of the BSKP subinstruction, the tested indicator
is automatically reset.

Some examples of correctly specified bit operation
instructions.

BSKP ONE CRY

Skip next instruction if the carry indicator is set, the
carry indicator is automatically reset.

BSET ZRO SO

Reset the static overflow indicator.

BSET BCM 170 DT

Complement the sign bit in the T-register (complementation
of a floating point number).

BSET ZRO 170 DT

Set the sign bit in the T-register to zero (absolute value
of a floating point number).

BSET ONE 60 DX

Set bit 6 in X-register to one,

BLDA 160 DA
BSET BAC 160 DX

Copy A-register bit 16 into X-register bit 16.

*

Input-output control

o Q o l\‘
10/ Q X1 R Devrno
15 1110 9 87 0
IOoT Operate specified device

according to function. Time 1 mc + 0,4-11 ps
The IOT instruction is used both for starting an output
device, in which case the data word is taken from the
A-register, or for reading a data word from an input

device into the A-register. Other functions again may

read or change the status of the device only.

The input-output devices are grouped together and as much
as 64 different devices may be’ gathered in one groun.
Maximum 4 groups of input-output devices may be connected
to one CPU. Each group 1is connected to the CPU by means
of a bus system with three cables, a data—input cable a
data-output cable and a control-information cable. These
cables connect all devices in the same group. Each

group has two interrupt request lines connected to two
different interrupt levels. Each device may have its
interrupt request signal connected to one of these levels.

The three function bits (8 - 10) usually have the
following meaning:

Bit 8: ACT Activate the specified device.

Bit 9: SKA Skip 1f start acceptable. If the device
accepts this input-output instruction
(i.e. the device is recady), the next
instruction is skipped.

Bit 10: PIN Prepare interrupt. Turn on the interrupt
system of the specified device.

The three function bits, ACT, SKA and PIN may in the same
IOT instruction be given any possible combination.

If these function bits are all zero, this is interpreted
as a different instruction:

SNI Skip if not interrupt. If the specified device
has not transmitted an interrupt request the
next instruction is skipped, otherwise the
interrupt system of this device is disabled.

Example of use of input-output instructions.

A programmed wait-loop until the device becomes ready will
normally look like:

I0T SKA DVN % DVN = DEVICE NUMBER
JMP ®x—1

o=

ls«
.
oo}

- 38 =

To print the content of bit 0 - 7 of the A-register on
the Teletype paper tape and/or punch:

Ior
JMP

SKA
-1

ACT PNT

To read one character from the on-linec Teletype into
the A-register bit 0 - 7, bit 8 - 15 will be cleared:

SKA
w-1

IOT
JMP

ACT RKE

To program a stanning of several input devices operated in
parallel and read the information in the random order it
is given (for instance if several Teletypes are connected
to the same computer) the following type of program

will do:
I0T SKA DV1
JMP ®2
JMP RDV1 % JUMP TO ROUTINE ¥FOR
READING DEVICE 1
10T SKA pv?2
JMP %2
JMD RDV2
107 SKA DV3
JIMP ®2
JMP RDV3

A program to recognize an

look 1like:
I0T SMI DV1
JMP SpV1 % ROUTINE TO SERVICE DEVICE 1
10T SNI Dv2
JMP Shv2
10T SNI pvV3
JMD Sbv3

-

input-output interrupt may

Miscellaneous instructions

There are some instructions that do not require memory
addresses. Some of these instructions are orouped to-
gether in the WBT instruction, where bits 0 - 10 give
further speocifications to this instruction.

Floating point convertion.

Two subinstructions are available. A sinagle precision
fixed point number may be converted to a standard form
floating point number. A floating point number may be
converted to a fixed point single precision number. For
both instructions the scaling factor is specified in the

- 39 -

displacement part of the instruction. The range of the
scaling factor is from -128 until +127 which gives a
convertion range from approximately 10-39 to 1039.

The two subinstructions are
NLZ Normalize

Convert the number in the A-register to a standard form
floating number in floating accumulator, using the dis-
placement of the NLZ instruction as a scaling factor.

For integers the scaling factor should be +16, a greater
scaling factor will cause a greater floating point number.
Because of the single precision fixed point number, the
D~-recgister will be cleared.

Affected: (Ty, A), (D) Time 1 mc +(0,4-6)pus

DNZ Denormalize

Convert the floating number in the floating accumulator
to a single precision fixed point number in the A-register,

using the displacement of the DNZ instruction as a scaling
factor. When converting to integers the scaling factor
should be ~16, a greater scaling factor will cause the
fixed point number to be greater. The T- and D-registers
arc not affected by the DNZ instruction.

Affected: (A) Time 1 mc +(O,4~6)ps
1f the convertion should be to or from double precision
fixed point, special subroutines are available for this
purpose.

Transfer to A-register.

The subinstruction TRA, transfer to A-recister, is used
for reading those reaisters which cannot be reached by
means of the ROP or I0T instructions. The following
registers may be read by means of the TRA subinstruction.

OPR Operator pnanel register, setting of switches on
the operators nanel.

STS Status word, it consists of the six programmable
status flip-flops, carry indicator, static over-
flow indicator, floatina point overflow indicator,
K one bit accumulator, dynamic overflow indica-
tor , multi shift link flip-floo.

PID Priority interrupt detect register.

PIE Priority interrupt enable reaister.

The TRA subinstruction should be specified by TRA fol-
lowed by one of the mneumonics listed above.

Transfer from A-vegister.

Those registers which cannot be reached by the ROP or IOT
instructions can be set by three subinstructions in the
WBT group.

- 40 -

The transfer from the A-register may be either an
ordinary transfer of all 16 bits or a selective set of
zeros or ones depending on the content of the A-register.

The three subinstructions are
TRR Transfer to register.

MCL Masked clear, for each bit which is a one in
the A-register the corresponding bit in the
specified register will be reset.

MST Masked set, for each bit which is a one in
the A-register the corresponding bit in the
specified register will be set.

The STS, status register, may only be set by means of
TRR subinstruction.

The PID and PIE, priority interrupt detect and enable,
registers may be set or reset selectively by means of
the MCIL and MST subinstructions.

Control of interrupt system.

The priority interrupt system may be turned on or off by
means of the subinstructions.

ION Turn on priority interrupt system.

I0r Turn off priority interrupt system.

Programmed stop of the computer.

The instruction WAIT will cause the computer to stop if
the interrupt system is not enabled. The program counter
will contain one more than the address of the WAIT
instruction (it points to the next instruction after the
wait) .

In this programmed wait the STOP/CONTINUE button on the
operator's panel is lighted red. To start the program
in the instruction after the WAIT, push the button
STOP/CONTINUE.

If the priority interrupt system is enabled, WAIT will
cause an exit from the level now operating (the corres-
ponding bit in PID is reset) and the program with the
current hicghest priority will be entered, which normally
then will have a lower priority than the program which
contained the WAIT instruction. Therefore the WAIT
instruction means "Give up priority". When the program
is interrupted in such a WAIT instruction, the P-register
points to the instruction after this WAIT, which will be
the first instruction the next time this program is
entered.

- 4] -

If there are no interrupt reguests on any level when
the WAIT instruction is executed, the program is exited
and the reaisters saved, but the computer will stop in
and IDLE instruction and wait until any interrupt
requests occur.

Note that it is legal to specify WAIT followed by an
octal number less than 377. This may be useful to de-
tect in which location the program stopped. The WAIT
instruction is displayed at the operators panel (IR-
register).

A/S NORDATA |™ NORD - 4 praving no
NORSK DATA
ELEKTRONIKK INSTRUCT ION CODE
b&@ﬁ:gmwmwhkmw\q
ovp . v | STZ 00000 |
O |0 ove STA 0000 |
610 . ovv | STT ooo(o
Ol .cvo | STX 0001
_Ozp.cm> | STD 0.0 L o o
1 oil.oo | LDD o]o s 1
030.000 | STE 001 [0
O3y, @D LOF o' 0y |
oWo.o | M/ 0.l 000
3 O4y. o0 | LDA of‘,foéo:ll X 1 8| Displacement
050.60> | LDT oll. 010 A
oS¥.ov0 | LOX ol ot I
060.cm> | RDO 61 1.0 0
3 | 9.0 | sus o1 10
020.050 | AND ol (.1lo]
024.c50 | ORA o1
_{oo.cv® | FAD 11000 0
by | 10 o FsB_ ltoo o
_lo.em | Fd 100 1o
/14, oo Fov { oo (| 1
[20.0v0 | MPY i 61 0 o
/2%.000 | JMP o1 ol
5 |12 =
_I3o.00 | CJP [l oy.1 ©
/34 ¢ JPL o+t |}
/40.gv0 SKP it 60 0 E'E{ _ |
6 L 199.o> | RoP 1 oo NEEREE] S D
/50.6t M1 [1 01} Olsabin.
/sy | SHT [0 01 [[EBIE R Vumber of shitts
/60. 0w foT {1 1.0.0 Q‘?&;&{ Device number
_lek.omo | Y
! _/20.00> | ARG _[(A 0| Frcn. l Argument
/7%. oD ' BoP /I i || |Function | Bit no D
BRERRBESEET ST~
TERRLE
DRAWN BY @B Rernarks Replacement for| Date
APPROVED BY
Replaced by Date
DATE U/ - 63

