
‘ NORD — 1

‘ REFERENCE MANUAL

NORD — 1
REFERENCE MANUAL

£0

_ .3.“MM-”
‘1...‘Vs.

{ NORD — 1 REFERENCE MANUE’IL/
V
Complete instruction repertoire

Date: January 1968

Contents

1 INTRODUCTION

2 SYSTEM ORGANIZATION

2.1 Core memory
2.2 Memory control
2.3 Central processing unit

2.3.1 Register block
2.3.2 Control flip-flops
2.3.3 Arithmetic and control units

2.4 Instruction and data word formats
2.4.1 Instruction word
2.4.2 Data word

.5 Interrupt system
6 Memory Protection system

L») INSTRUCTION REPERTOIRE

3.1 Memory reference instructions
3.l.l Store instructions
3.1.2 Load instructions
3.1.3 Arithmetic and logical instructions
3.1.4 Sequencing instruction
3.1.5 Double wordlength instructions
3.1 6 Floating point instructions
Shift instructions
Arithmetic register Operations
Skip instructions
Argument instructions
Bit Operation instructions
3.6.1 Skip instructions
3.6.2 Setting of bit instruction
3.6.3 Instructions using the one bit

accumulator
Input—output control
Miscellaneous instructions
3.8.1 Floating point convertion

Transfer to Aeregister
Transfer from A—register
Control of interrupt system
Programmed stOp of the computer

w
w

w
w

w

C
'X

U
‘lu

bo
LA

JN
9

M
b)

(1
3%

0
0

0
0

0
0

0
0

w
w

w
w

m
a

t-
W

M

Page

10

11
11
11
11
ll
12
13
15
15
15
16
19

21
21
23
23
24
25
25
26
27
29
33
34
35
35
35

35
37
38
38
39
39
4O
40

is

m 13 ,

NORDnl REFERANCE MANUAL
-mmammanmwmmumim.mm«mwpmgmmw

l. ENTRODUCTION

NORDnl is a general purpose stored program digital
computer developed? manufactured and marketeé by
A/S NORDATA, Norwegian Data Electronicsy Oeion

The main characteristic of the NORDME computer 13
its extremely broad instruction repertoire which
also includes floeting point arithmetic, ite unioue
interrupt system for real—time and multiproqramminq
systems, and its flexible communication with perioberal
equipment. ‘

@OQE
MEMGRE

W: EErEEOEzEE mama
fig U‘EFENNEEtfi

MEMQREE ELQEETEEOEWE
MWEif» ‘E

E E
afimTRRL

WEMWRE E pfiacrsawo EE-EEEEEE 53mm
EEE’ENEL EENE‘T’ “E/Q meww

E @%E&w§
Efa—ous «EM-w W W

TfiiPEwRITER‘“ 3 “WWW E/o may.

Tr—EPEREHDERW‘ W W 1/0 35v. 2
t E/QEBEw

NORD”? CQMQUTER 595TEM

W

.3.

SYSTEM ORGANIZATION

Core memory

The main storage device is a coincident current ferrite
core memory. The memory size varies from 4096 words to
65536 words. Word length is 16 bits plus parity bit.

The central processing unit operates asynchronous to
the memory timing control and the computer therefore may
accept memories of different speed. The fastest memory
Speed which may be efficiently utilized by the central
processing unit is l microsec. cycletime.

Memory control

Each memory block has its own memory control. This
memory control permits direct access from 4 different .31
devices to the memory block. The priority between the
devices will be fixed (wired in priority). One of the
devices is the central processing unit, usually at
lowest priority. Together with one CPU, three data
channels may have access to each memory block. The
data channels are usually connected to such devices as
disc storage, magnetic tape storage, line printers or
other innut—~output devices with high data transfer rate.
When the data channels are operating memory cycles are
stolen from the program running, for each data channel
transfer of a 16 bit word one memory cycle is stolen.
With a 1 us Cycle time core store the maximum total
data channel transfer rate is 16.000.000 bits/sec.
The memory control is designed for multiprocessor
systems. Two or more central processing units may be
connected to one or more memory blocks.

Central processing unit

The central processing unit, CPU, controls the execution
of the instructions and the input—output system.
Basically the CPU consists of a register block, control
flip—flops and an arithmetic and control unit.

Register block.

The register block consists of 8 general registers, 4
bus memory registers and 2 priority interrupt control
registers. The CPU registers are 16 bit high~speed,
integrated circuit registers.

The 8 general registers are:

R~register: Address register, this register is not
-accessible by prOgram.

{A
}

a

Atregistcr:

D~register:

Teregister:

Lmregister:

eegister:

B~register:

Pwregister:

- 12 _

This is the main register for arithmetic
and logical Operations directly to the
memory. This register is also used for
input—output communication.

This register is an extension to the
A—register in double precision or floating
point Operations. It may be connected to
the A—register during double length shifts.

Temnorary register. In floating point
instructions it is used to hold the
exponent part.

Link register. The return address after
a subroutine jump is contained in this
register.

Index register. In connection with in—
direct addressing it causes post-indexing.

Base register or second index register.
In connection with indirect addressing it
causes pre—indexing.

Program counter, address of current
instruction. This register is controlled
automatically in the normal sequencing or
branching mode. But it is also fully
programcontrolled and its content may be
transferred to or from other registers.

Besides from the R- and P—register all registers are fully
programcontrolled and may be used for other purposes than
those described here.

Two instructions, ROP and SKP, may specify a register whose
content is always zero.

Control flip—flOps.

Six control flip—flops are accessible by program.

These six

C

flip—flops are:

Carry flip—floO. The carry flip~flOp is dynamic
and affected by the instructions ADD, SUB, RADD,
RSUB, COPY, AAA, AAT, AAx, AAB.

Dynamic overflow flip—flop. It is affected by
the instructions ADD, SUB,RADD, RSUB, COPY,
AAA, AAT, AAX, AAB-

Static overflow flip—flop. This flip—flOp re“
mains set after an overflow condition until it
is reset by pr0gram. It is affected by the
instructions ADD, SUB, RADD, RSUB, AAA, AAT,
AAX, AAB.

_ l3 _

Z 2 Floating point overflow flip—flOp. This
flip~flop is static and remains set until it
is reset by prOgram. The Z flipwflOp may be
internally connected to an interrupt level
such that an error message routine may be
triggered” It is affected by the instruction
FDV, if division by zero is tried.

K : One bit accumulator. This flip—flOp is used
in the BOP, bit operation, instruction to
store temporary one~bit data.

M : Multi shift link flip flOp. This flip—flOp
is used as temporary storage for vacated bits
in shift instructions in order to ease the
shifting of multiple precision words°

These six flip~f10ps are fully programcontrolled either
by means of the BOP instruction of by the TRA or TRR sub— '%3
instructions where all fliprflops may be transferred to
and from the Amregister°

It is only the automatic affection in connection with carry
and overflow that are described here.

2.3.3 Arithmetic and control units.

Figure 1 shows a block diagram of the central processing
unit° The address and index computations are performed in
a Special address arithmetic unit. All programmed arith~
metic and logical operations are performed in a 16 bit
high—Speed arithmetic unit. Therefore all such operations
may be performed on any of the registers.

The control unit contains the necessary logic circuitry to
access data and instruction words, to modify instruction
addresses, to perform arithmetic and logical operations
and to control the interrupt system.

FROM MEMORSJ

fifl/ ENfiNCE
Ajag/3’54 " w'fi/NSTRUCT/ON NEd/arfflj

0“ ~L_.__._::3WW
CyCLE COUNTER

55mm" cal/INNER M REG/5775195

C ON 71‘? 01. &
Z. OG/C fiR/THMET/C

W

INT. OE TEL?” RIG. fi

”V7. CONT/90A REC}. <32»

/NT.L£V£L

m.

OPERfifORS a
PRNEL

e
ECdNTRcl Fupafloml

(TE/V 7W9; fidecrss/A/a UN 1""

”15;“

MEMORS {BUCFE‘R"i

ENTERRUPT
HDDRES5

QDRESS QMTHMETW

moaess
E2~ We»: mm

i0E3 mamgma.

E5“ mwwm

XNQEédéTER

INTERRU

au fiwREMWEQ

OPR.R&

DRTQ

G-ENEML QEMS’EQRE» ma flRWHMETm

m 13 i

2.4 Instruction and data word formats

2.4.1 instruction worda

a [opacofie x i E hispiacement

15 ii 13 9 8 7 0

One instruction word always accupies one location; 16 bits,
Of core memoryo The operation code occupies the five most
significant bits (ii w ZS)y and specifies one of 32
instructionse

For memory reference instructions bits 1 w 18 are used to
specify the address of the instructioni The instructions
which do not have an address, use these hits to further
specifications. Bits 8; 9 and log called B, I and X, are
used to control the address computation. 3

The displacement is an 8 hit signed number ranging from
~128 to +3.27i using two’s complement for negative numbers
and sign extensions

a 2.4.2 Data word.

Three different types of data words exist:

a) Single length numbers: a 16 hit number which occupies i
one memory locationg Reoresentation.of negative
numbers are in Zis compiementa Range as integers:
-- 32768$ gxg? $3276K

b) Double length numbers: a 32 hit number which occupies
two consecutive locations in memory, and where
negative numbers also are in 2‘s complement“

n n+1
r

Most» sight least signa

Bi A l6 l5 D 0

A double word is always referred to by the address of
its most significant partq Normally a double word is
transferred to the registers so that the most signifi—
cant part is contained in the Awregister and the least
significant in the D~register. Range as integers:
« 2 147 483 648éégxgfi'2 14? 483 647.

c) Floating point numbers: The data format of floating
point words is 32 bits mantissa magnitude, one bit
for the sign of the number and 15 bits for a signed
exponent“ The mantissa is always normalized,
OgSgInantissa fly for all non zero numbers hit 31
equals one» m e exponent base is 2, the exponent is
biased with 2 y so that a standardized floating zero
contains zero in all £8 bitsa

In core store one floating point data word occupies
three it hit core locationsp which are addressed by
the address of the exponent parti

f;

n exponen? end eiqn
n+1 meet sa;ficefit pert of mentiesa

n+2 ieeefi eiqeifieeeat eezt of mentissa

in C@U reoiste :8 bits 0 w 15 of the mentissa is in the
D registers bits 16 31 in the Awreqieter anM
bits 32 m £7? exponer t and Sign? in the T register.

These three reqietere togeche‘; ere Mefimed as the

floating MCCMWLWIM or;

i

at;

n ‘51:“; fle-f?

fi. Exponent Meme tissa

4 ‘1" " 32 31 A .16 15 D o

r oromzmately 10 decimal
has an exactly floatingThe accuracy is 32 E>ite o

digite, any infieger up to 2%
point TQDLESQntatD
The renge ie

Qaiabgg *O,§ M £x’E< m3é3£5"7 and gem:

O}:
v , ,, f fl Cf
To QQQLO <§X§< gaééuzQ

Any other Mate we 1M format {her fihoee fihree described
here ma y be oz0u”emmed These three data word formats

have Offeqnmififi ins? ructione whi oh make these
formai:e W eoc “to e1 to use It 13 aleo rather

easy to :ioqrem oete worfi formate ue ing one bit data
word (logical variebe‘ ee) and 8 bite Mata word
{Character byte)$

Interruot s stem

The NORD~l computer bee e priority infierrupt system with
16 different ‘ levels" The interrUpt system has
been designed for QN «iime aooiecaixon and multiw
programming ey16emeg The 16 Mi "efent priority levele
may be trigcered eixkec r from ex‘ real 5:1onals or from
programc Some of the levels ere eleo t1 iqgered by control
'Effifigfg from tee oeetrei rroceeeor? for inetance if the
memory protection eystem ie violated or if gwgggwgukg

o01ouw%flst1uctlo euee a ove ”'tiown Vxeernel interrupt re~

quest signals mey be lQUflQd emamconnected Lo the same
interrupt level? the exiority between interruot requests

on the same level is then Metermieed by program“

When the computéex: makes a transfer from one level to another

the content of all seven central Keqieie rs and the settinq

of the status flLomffl one: are autometiccally saved in
locations in core memory wnioh are eessocieted with the
level which was interropteén Before the mew level is

entered the seven oentrel registers enM the stetus flip

flope are loaded from iocetione : core memory which

- 17 _

again are associated with the level now to be entered.
This automatic saving and unsaving of all the programmable
registers and flip—flOps make multiproqramminq extremely
easy, and the programs on the different levels may be
completely independent of each other.

SET
cLeaa

l
MPKéfi

PL

V
PLram—.1
PK

T T

CHRNGE
LEVEL
SIGNRL

ENCODER -
A

To R»REGI$TER.¢,_.__.___‘.

FROM PE

n-REGIsTER

To R~REGI5TER4
lPL

-—--# PD , @_.wmr
R‘REMSTER ””005“ msmucnowmmmmm

lNTERNHL/EXTERNHL
INTERRUPT REGISTER

PRIORITB INTERRUPT SBSTEM

a ;g m

The interrupt system is controlled from two 16 bit
registers where each level is controlled from one bit in
each of the two registerse

The two registers are:

PID Priority interrupt detect
PIE Priority interrupt enable

Both registers are programcontrolled, see section 3083,
the setting of individual bits in the PID register is
also for some predetermined levels controlled by wired
in interrupt requester

The PID register is used to detect and hold an interrupt
request. Each individual bit may be set either by
internal or external interrupt requests or by program°
Usually individual bits in PID are automatically reset
when the interrupt requests have been processed. A
WAIT instruction, “give up priority", causes the bit in
the PID register which corre5ponds to the level now
Operating to be resetq

The PIE register is used to enable the different levels.
Any interrupt level can only have its correSponding program
operating if the corresponding bit in PIE is a one. The
PIE register is controlled only by pregramfi Because of the
automatic saving and unsaving of all register and status
information when changing from one level to another, it is
possible to disenahle an interrupt level for a while, and
enable it afterwards regardless which levels have been
operating in the meantime“

The interrupt levels are numbered from 0 until l5, where
level number 15 has the highest priority, Associated with
each level is a corresnonding program. At any time the
program with the highest priority is running, The highest
priority is determined as the highest level which has a one
in the corresponding bits both in the PlD and the PIE
registero

A change from a lower to a higher priority level is usually
caused by an interrupt reguest(internalx external or
programmed request)° A change :rom a higher to a lower
priority level usually takes place when the higher level
program gives up its priority (the WAIT instruction causes
the corresponding bit in PlD to be reset).

In core memory each level is associated with one location
called levelwpointerg The level~pointer gives the address
of the corresponding levelwhead. Each levelwhead consists
of 8 consecutive locations which may then be located
anywhere in core memory“ The levelmhead is used to hold

the content of the seven central registers and the status
information when the program on the corresponding level is
not running,

a 19 m

Whenever a program is interrupted the register and status

are saved in the level~head corresponding to this program,

then a new level—pointer is chosen and the registers and
status are loaded from the levelwhead which corresponds
to the new level~pointera The total time involved when

changing from one level to another is 32 memory Cycles.

Memory protection system

The NORD—l protection system provides operation protec~

tion for input/output instructions, interrupt control in~

structions, jump instructions and memory write instruc~

tions. Input/output and interrupt control instructions
can be executed from protected area only, and memory in»
structions in unprotected area may write in unprotected
area only. Jump from unprotected to protected area is
not permitted. Any instructions violating the protection
rules will produce interrupt on a specified level. In
machines without a priority interrupt system the illegal
instruction will be equal to a WAIT instruction.

The standard protection system divides the core memory
into two equal parts, one protected area (upper half) and
one unprotected area (lower half),

An Optional expansion of the protection system which dee
vides the memory into l6 equal parts is also provided.
The protection of individual blocks of core memory is
controlled by a l6 bit register. With 4096 words in the
memory one block is a region of 256 consecutive locations,
and with a 16K memory one block is a region of l024 con~
secutive locations. A protection bit of O designates an
unprotected memory block and a protection bit of one
designates a protected blocla

The protection register can be loaded from the Anrcgister
with the instructions MCL, masked clear, or MST, masked

set, instructions which of course are privileged (sub—
instructions of RTR).

Operation of the protection system is under control of
the PROTECT switch on the operators panel“ If the pr0*
tection system is Operative the following rules apply:

i. The privileged instructions IOT, TRR, MCL, MST,

WAIT, ION and TOP can be executed only if they are
accessed from protected memory. If a privileged
instruction is accessed from unprotected memory,
the instruction is not executed; instead, the
protection violation interrupt level is triggered.

_ 20 _

If a jump-instruction or ROP DP or BOP DP is
accessed from unprotected memory and the effective
new address is in protected memory, the instruction
is not executed; instead, the protection violation
interrupt level is triggered.

The instructions STZ, STT, STA, STX, STD, STF and
MIN can be used to alter protected memory only if
the instruction is accessed from protected memory.
If an attempt is made to alter protected memory
with an instruction accessed from unprotected
memory, the operation is not performed; instead
the protection violation interrupt level is
triggered.

3.1

- 21 _

INSTRUCTION REPERTOIRE

Memory reference instructions

In the instruction word, ll bits are used to specify the
address, 3 address mode bits, and an 8 bit signed displace~
ment using two' 8 complement for negative numbers and sign
extension.

15 ll 10 9 8 7 0

OP.Code X I B Displacement

NORD—l uses a relative addressing system, which means that
the address is specified relative to the content of the
Program counter, or relative to the content of the B— or
X—register.

Bits 8, 9, 10 called B, I, X, are used to specify the
address mode.

If B, I, and X all are zero, the normal relative addressing
mode is specified, the effective address equals the content
of the Program counter plus the displacement.

The diSplacement may consist of a number ranging from.
~ 128 to + 127, therefore this addressing mode gives a
dynamic range for directly addressing 128 locations
backwards and 127 locations forwards.

Otherwise the B, I and X bits are decoded as follows:

B=O means the address is relative to the Program counter
(address of current instruction).

If B=O, X=l and I=O, this is decoded in a special way
giving the address only relative to the X-register.

B=l means the address is relative to the content of the
Beregister, also called preindexing. The indexing by B
takes place before a possible indirect addressing.

I=l specifies indirect addressing.

There is only one level of indirect addressing.

X=l specifies address modification by X, also called post
indexing, which takes place after the indirect addressing.

The address computation is summarized in Table l° The
symbols used are defined as follows:

X Bit 10 of the instruction
I Bit 9 of the instruction
B Bit 8 of the instruction

D Content of bits 0 - 7 of the instruction
(diSplacement)

(X) Content of the x—register
(B) Content of the B—register
(P) Content of the P—register
() Means content of the register or word

B I X Mneumonic Effective address

000 (p) 3:13
0 O l ,X (x) —+D
O l 0 I ((P) ; D)
O l l I,X ((P)+~ D) + (X)
l O O ,B (B) ; D
1-0 l ,n ,x (B) —+D + (X)
110 ,BI ((13) ;D)
l l l ,B I,X ((B) a D) + (X)

Table 1 Addressing modes

The instruction CJP, conditional jump, uses B, I and X
to specify the jump condition, see section 3.1.4.

Tn the following a short description of each memory
reference instruction is given. The same mneumonics as
used in the assembly language, are Specified. For each
instruction the registers and indicators that can be
affected by the instruction are listed. The execution
time of each instruction is Specified in memory cycles
(me).

If indirect addressing is specified, an additional memory
cycle is required.

The following abbreviations are used in the descriptions:

A A~register
D D—register
P Program counter
X X—register
T Twregister
L L~register
B B~register
EL Effective location
EW Effective word, or (EL)
C Carry indicator
Q Dynamic overflow indicator
0 Static overflow indicator
Z Floating point overflow indicator
mc memory cycle
ps micro—second

.1.

Store instructions

STZ Store zero.

The effective location is cleared.
Affected: (EL) Time 2 mc

STA Store A—register.

The content of the A—register is stored in the effective
location.
Affected: (EL) Time 2 mo

STT Store T—register.

The content of the T—register is stored in the effective
location.
Affected: (EL) Time 2 me

STX Store X-register.

The content of the X~register is stored in the effective
location. The address of this instruction may be modified
by the content of the X—register.
Affected: (EL) Time 2 me

MIN Increment memory and skip if zero.

Effective word is read and incremented by one and then
restored in the effective location. If the result
becomes zero, the next instruction is skipped.
Affected: (EL), (P) Time 3 mc

Load instructions

LDA Load A—register.

The effective word is loaded into the A—register.
Affected: (A) Time 2 mc

LDT Load T—register.

The effective word is loaded into the T-register.
Affected: (T) Time 2 mo

LDX Load X—register.

The effective word is loaded into the X—register. The
address of this instruction may be modified by the
previous content of the X-register.
Affected: (X). Time 2 mc

M 24 i

Arithmetical and logical instructions

ADD Add to Atregisterm

The effective word is added to the A—register with the
result in the Amregistero The carry indicator is set
to 1 if a carry occurs from the sign bit position of the
adder, otherwise the carry indicator is reset to 0.
If the signs of the two Operands are equal but the sign
of the result is differenti overflow has occurred, and
both the dynamic~ and static overflow indicators are set
to one. If the condition for overflow does not exist,
the dynamic overflow indicator is reset to 0, while the
static overflow indicator is left unchanged. The static
overflow indicator is automatically reset when sensed
by a skip instruction (see BOP).
Affected: (A); C, O, Q Time 2 me

SUB Subtract from A~registerq

The two's complement of the effective word is formed and
added to the content of the Aeregister with the result in
the Awregisteri The same rules as for ADD apply for the
setting of the overflow and carry indicators.
Affected: (A), C, O, Q Time 2 me

AND Legical and“

The logical product of the effective word and the content
of the Aeregister is formed, with the result in the
A registero The logical product contains a l in each bit
position for which there is a corresponding 1 in both the
A~rcgister and the effective word, otherwise the bit
position contains a zero“
Affected: (A) Time 2 me

ORA Logical inclusive org

Logic inclusive or is formed between the effective word
and the content of the A‘registcr, with the result in the
A~reqister. Logic inclusive or contains a zero in each
bit position for which there is a correSponding zero in
both the A~register and the effective word, otherwise the
bit position contains a la V
Affected: (A) Time 2 me

MPY Multiply integero

The effective word and the Awreqister is multiplied and
the result is placed in the A~reqisterg Both numbers
are regardec as signed integers and the result as a
16 bit signed integcre
Affected; (A) Time 2 me + 6 us

3. l. 4 Sequencing instructions

JMP Jump

The effective address is loaded into the program counter,

and the next instruction is taken from the effective

address of the JMP instruction.
Affected: (P) Time 1 mo

JPL Transfer P to L and jump.

The content of the program counter is transferred to the
L—register, the effective address is loaded into the
program counter, and the next instruction is taken from
the effective address of the JPL instruction.
Affected: . (P), (L) Time 1 mc

CJP Conditional jump 6%

Bits B, I and X are used to specify one of 8 jump ’
conditions. If specified condition becomes true the
displacement is added to the program counter and a jump
relative current location takes place. The range is
128 locations backwards and 127 locations forwards. If

specified condition is false no jump takes place.
Affected: (P) Time 1 me

The eight jump conditions are:

JAP Jump if A—register positive, A bit 15 = 0.
JAN Jump if A—register negative, A bit 15 = 1.
JAZ Jump if A—register zero.
JAF Jump if A-register filled (not zero).
JXN Jump if X negative, X bit l5 = l.
JXZ Jump if X zero.
JPC Jump if X positive and count.

X is incremented by one, and if X bit 15 {e
equals zero after the incrementations, the
jump takes place.

JNC Jump if X negative and count.

X is incremented by one, if then X bit 15
equals one, the jump takes place.

A conditional jump instruction must be specified by means
of the 8 mneumonics listed above. It is illegal to specify
CJP followed by any combination of ,B I and ,X.

Double wordlength instructions

STD Store doubleword.

The content of the A—register is stored into the effective
location, and the content of the D—register is stored into

xi

~ 26 n
the effective location plus onee
Affected: (EL), (EL+l) Time 3 me

LDD Load doubleword.

The content of the effective location is loaded into the

Apregister, and the content of the effective location

plus one is loaded into the D~register.
Affected: (A), (D) Time 3 me

\

Floating point instructions

A floating point word consists of 48 bits. The floating

accumulator consists of the three registers, T, A, D

where the eXponent is contained in the T—register, the

most significant part of the mantissa in the A~register

and the least significant part of the mantissa in the

D—register.

STF Store floating accumulatori

The content of the floating accumulator is stored in

three memory locations, starting with exponent part in

effective location.
Affected: (EL), (EL+l), (EL+2) Time 4 me

LDF Load floating accumulator.

The content of the effective location and the two follow"

ing locations are loaded into the floating accumulator.

Affected: (T), (A), (D) Time 4 me

FAD Add to floating accumulator.

The content of the effective location and the two follou-

ing locations are added to the floating accumulator.
Affected: (T), (A), (D) Time minimum 4mc+ 6us

Time maximum 4mc+30ps

FSB Subtract from floating accumulator.

The content of the effective location and the two follow—
ing locations are subtracted from the floating accumulator.
Affected: (T), (A), (D) Time minimum 4mc+ 6ps

Time maximum 4mc+30ps

FMU Multiply floating accumulator.

The content of the floating accumulator is multiplied

with the number in the effective floating word locations.

Result in floating accumulator.
Affected: (T), (A), (D) Time 4 me + 28 ps

3.2

- 27 -

FDV Divide floating accumulator.

The content of the floating accumulator is divided by the
number in the effective floating word locations. Result
in floating accumulator. If division by zero is tried
the floating point overflow indicator is set to one.
This indicator is static and remains set until sensed
by a skip instruction (see BOP).
Affected: (T), (A), (D), Z Time 4 mc + 28 ps

Shift instructions

SHIFT COUNT
R Qop .COde § 0 ‘

SHT R: Q: $\ $ N

15 ll 10 9 8 7 5 O

SHT Shift.

Single shifts Time lmc + 0,4x Nps
Double shifts Time lmc + 0,8x Nps

The shift instruction uses the address bits to Specify
the type and the number of shifts to be performed.

N is a signed number which specifies shift direction
and number of shifts.

N > 0, bit 5
DJ < 0, bit 5

o: Shift left
1: Shift rightIf

H

Maximum number of shifts is 31 left shifts and 32 right
shifts.

Bit 9 and lO specify the type of shift Operation. The
decoding is as follows:

Bit 10 Bit 9 Mneumonic

O O Arithmetic shift. During right
shifts the signbit (bit 15) is
extended during the shifting,
in left shifts zeros are fed
into vacated bit positions.

0 l ROT Rotational shift. In single re—
gister shifts bit 0 is connected
to bit 15, in double shifts bit
0 of the D-register is connected
to bit 15 of the A~register.
Only left rotate shift is pOS"
sible. ,

0 ZIN Zero end input.

LIN Link end input. Every shift
instruction causes the last bit
which is vacated to be con—
tained in the M, multi shift

VWM... _,

4.28...

link flip~flop, this may then
be used as end input for the
next shift instruction.

Bit 7 and 8 Specify the register(s) to be shifted. The
decoding is as follows
Bit 8 Bit 7 Mneumonic

0 O SHT Shift the T~register
0 l SHD Shift the D—register
l 0 SHA Shift the A—register
l l SAD ' Shift the A— and D~registers

connected. Bit O of the A—
register is connected to bit
l5 of the D—register.

Only the A, T and Dwregisters may be shifted, if any
other register is to be shifted, its content must first
be placed in the Ag T or Unregistera

If no shift direction is specified, left shift is assumed.

The number of shifts is interpreted by the assembler as
an octal number.

A right shift may be Specified either by the correct 6
bits negative shift count or by writing the mneumonic
code SHR followed by the positive number of right shifts.
A shift i_nstruction to shift the accumulator 3 positions
to the right, may be Specified by one of the following
identical instructions.

SBA 75
SEA 100~3
SHA SHR 3

In a right shift nothing should be written between the
SH} mneumonic and the number of right shifts (a Space to
distinguish between Sim and the number is necessary).
SHR must be the last mneumonic us ed in the instruction.
Some examples of correctly specified shift instructions:

SAD l0

Shift the A— and Deregister connected 8 positions
(octal l0) lefta

SHT ROT 6

Rotate the T~register 6 places to the left.
SAD ROT 20

Shift the connected A~ and D~register l6 positions to the
left. Rotate shift is Specified, which in this case Will
cause the content of the A« and D~register to be ex—
changed. The same effect may be obtained by means of a
SWAP SA DD instruction (see ROP instruction).

SHD ZEN SHR 2

Shift the Unregister two places to the right, zeros are
fed into the right end during the shifting. Bit 15 and
l4 in the Deregister will become zero.

3.3 Arithmetic register Operations

OP.CODE
ROP RAD C I CM CLE S D

15 ll 10 9 8 7 6 5 3 2 0

R0? Register Operation. Time 1 me

The ROP instruction specifies Operations between any two
general registers.

The instruction decodes bit 0 _ 10 as follows:

Bit O — 2 specifies one out of 7 registers to be the
destination register. The destination register will be
loaded with the result of the ROP instruction.

D = O is a no Operation instruction.

Bit 3 ~ 5 specifies one out of 8 registers which containsthe value to be used as the source register Operand.

S = 0 produces a source value equals zero.

CLD 2 1: Clear destination register before Operation. If
the source and the destination register is the
same, the register as source is not cleared.

CD11 1

.L'J o
- Use complement (one's complement) of source

register as operand. The source register remains
unchanged.

Bit 8 and 9 are decoded in two different ways, dependenton the RAD—bit being zero or a one.

RAD = 1: Add source to destination.

When RAD = I, bit C and I are decoded as follows:
C: l 0: Also add Old carry to destination, ADCC 2 O 1: Also add 1 to destination, ADI

I

I

H
HI

I

It is not possible to both add previous carry and to add1 in the same ROP instruction. (If it is tried, only1 will be added independent of the status of the carryfliptflop).

RAD = 0: Binary register Operations.

The C and I bits are decoded as follows:

C,I:0,0 Register swap, destination and source exchanged,
SWAT?

0,1 LOgical and ., RAND
1,0 Logical exclusive or, REXO
l,l Logical inclusive or, RORA

_ 3Q _

If RAD = l, the overflow and carry indicators are set after
the same rules as applied for ADD, if RAD = 0, the overflow
and carry indicators remain unchanged.

The source registers are specified as follows:

SD Deregister as source
SP Program counter as source
SB Beregister as source
SL Leregister as source
SA A-register as source
ST T—register Vas source
SX X—register as source

If no source register is specified, zero will be taken as
source register.

The destination registers are specified as follows:

DD D-register as destination
DP Program counter as destination
DB B~register as destination
DL L—register as destination
DA A—register as destination
DT T-register as destination
DX X—register ' as destination

The following groups of POP mneumonics are mutually
exclusive, i.e. only one may be used in a ROP instruction.

(SD, SP, SB, SL, SA, ST, SX)

Only one source register must be specified.

(DD, DP, DB, DL, DA, DT, DX)

Only one destination register must be specified.

(ADC, ADl)

Both 1 and old carry can not be added in the same instruction

(RADD, RSUB, SWAP, RAND, REXO, RORA, COPY).

Only one type of operation must be specified.

(ADC, ADI, SWAP, RAND, REXO, RORA)

Add 1 or add carry may not be used together with the
binary register Operations.

The recommended way to specify ROP instructions is to use
the following mneumonics which will be correctly trans-~
lated by the assembly language.

a
- 31 -

RADD, D + S ~9D Register addition
RSUB, D — S -9D Register subtraction
RAND, D - S -%D Register legical and
RORA, D + S ->D Register logical or
REXOC D @)S ->D Register logical exclusive or

9 . .SWAP, D g Register exchange
S 9 D

COPY, S + D Register transfer

Note that the ROP mneumonic is included in the above
mentioned mneumonics.

The assembly language will also permit use of the following
combined mneumonics.

CM2 = CMl ADl Two's complement
EXIT = COPY SL DP Return from subroutine
RCLR = COPY Register clear
RINC = COPY ADl Register increment
RDCR 2 COPY CMl Register decrement

The mneumonics RCLR, RINC and RDCR should be followed only
by the destination register specification.

Some examples of use of the ROP instruction.

RADD SA DX

The content of the A—register and X—register is added,
with the result in the X~register.

COPY CM2 SA DA

Complement (2' complement) the A-register.

RSUB ST DB

The content of the T»register is subtracted from the
content of the B~register, with the result in the
B~register.

RINC DX

The X-register is incremented by one.

RDCR DL

The L—register is decremented by one. (One's complement
of zero equals «1 in two's complement).

RCLR DT

T~register is cleared.

RCLR ADl DX

Xeregister is set equal to one.

RCLR CMl DB

B—register is set equal to minus one.

COPY SX DT

The content of the X—register is copied into the T—register.

SWAP SA DA

The content Of the A—register and the D—register is
exchanged.

RAND SL DX

Logical and is formed between the content of the L—register
and the X—register, with the result in the X~register.

Somzshort programs using ROP instructions.

COPY ' CMZ .SD DD
COPY CMl ADC SA DA

The two‘s complement of the 32 bit doubleword in A and D
is formed.

LDD PER
SWAP SA DD
ADD OLA+l
SWAP SA DD
COPY ADC SA DA
ADD OLA

The two double wordlength numbers PER and OLA are added
together, with the result in the A— and D~registers.

JPL SUBR
ERR, WAIT
NORM,

QUBR, LDA OLA
SUB PER '
SKP IF DA EQL 0

EXIT % ERROR EXIT
EXIT ADl % NORMAL EXIT

Subroutine jump, and return from subroutine to main

program.

The JPL instruction will place the address Of the WAIT
instruction into the L—register. (When JPL is executed
the Program Counter points to the address after this
instruction.)

The subroutine SUBR has two exits, one to the location
immediately following the jump (EXIT), which in this case
is an error exit, and one to the location two addresses
after the jump.

3.4 Skip instructions

NOT GRE

p OP.Code
SKP I C S D

15 ‘11 10 9 5 3 2 o

SKP Skip next instruction if Spe—
cified condition is true. Time 1 me

The skip instruction makes it possible to test the
relationship between any two general registers.

The decoding is as follows:

I = l: Invert skip condition , NOT
C = 0: Test condition 2 , EQL C3
C = 1: Test condition 2; , GRE

The S and D field Specifies the two registers to be
compared and tested.

The arithmetic eXpression D — S is tested, where D stands
for one out of 7 general registers, and S is one out of the
7 general registers or zero.

91;!

The D and S registers are Specified using the same
mneumonics as the ROD instruction, see section 3.3.
If S = O, the destination register is compared against
zero. Only one destination register may be compared
against only one source register in the same SKP instruction.

If D = O, the instruction is a no operation.

If the skip condition is false, the instruction is a no w
Operation. “.

Because of the great flexibility of the SKP instruction,
it may be found difficult to use this flexibility.
Therefore, the programmer is advised to use the following
format when specifying a SKP instruction.

a) The comparison should be specified as follows:

= EQL (Equal, C = O, I = 0)
#- UEO (Not equal, C = O, I = l)
2- GRE (Greater or equal C = l, I = O)
‘< LST (Less, C l, I = l)

b) The destination (D) register should be specified before
the source (S) register.

c) The mneumonic IF and the number 0, which both have the
value zero, may be used freely to obtain easy
readability.

SW 11? DL not 0 Skip if L = 0
mm 11-“ DT LST 0 Skip if T < 0
sw II" DD cm: SA Skip if D a A
sum IF m3 LST sx Skip if B < \<
Argument instructions

Time 1 me

Bits D, I and X are used to Specify one of 8 argument
instructions. All these instructions use the diSplacement
part of the instruction as a signed number ranging from
~ 128 until 127. This number is either placed in or
added to the specified register.

The eight argument instructions are

8AA Set argument to A—register
AAA Add argument to A—register
SAX Set argument to X~register
AAX Add argument to X—register
SAT Set argument to T—register
AAT Add argument to T—register
SAB Set argument to B—register
AAB Add argument to B~register

An argument instruction should be specified by means of
one of the eight mneumonics listed above. It is illegal
to Specify ARG followed by any combination of ,B I and X.

Examples of argument instructions.

SAT 13

Set the cnntent of the T—register equal to 13 (octal).
Bits 8 — 15 will become zero.

SAD " 26

Set the content of the D-registcr equal to — 26 (octal).
Bits 8 — l5 will become one, sign extension.
AAX 3

Add 3 tolthe content of the X—register. The addition is
modulo 2 3.

AAA ~ 6

Subtract 6 from the content of the A~register (modulo 215).
SAA 240

The content of the A~register will be 177640 after the8
execution of this instruction (sign extension).

ERA/1. # g A

IOT SKA ACT PNT
JNP X _ 1

Program to print the letter A.

_ 35
-

In an Add argument instruction the carry and overflow
indicatm‘s: me set murarrlinq its the same rules as
applied for the Annuinstruetiun, see sectien i.l.ie

Bit Operation instructions

BOP Sub.instr.? B D
l5 ll 10 7’6 3 O

BOP Bit Operation Time 1 me

The BOP instruction specifies Operations on a single bit
in one of the seven general registers, if D $ 0.

9 a 0 together with the number in B Specify operations on
one of the program controllable status or control
flip~flops (carry and overflow indicators). Li

For register Operations B defines the bit in the register
to be manipulated, B = O is the rightmost bit and
B = l70(octal) is the leftmost bit. The register is
Specified by means of the same mneumonics as used in
the R0? and SKP instructions, see section 3.3.

The BOP instruction also uses a one bit ”accumulator”
register, K, to hold temporary results.

16 different subinstructions are available in the BOP
instruction.

In the following description B means the bit specified
by D (register) and B (bit—number).

Skip instructions.

Four subinstructions are available to test the setting
of the Specified bit.

89K? ZRO Skip next instruction iF
BSKD ONE Skip next instruction if
BSKP BCM Skip next instruction it
BSKP BAC Skip next instruction if LU

C
U

C
U

C
J

H

m
ee

o
1 7C

Setting of bit instruction.

Four subinstructions are available to set the Specified bit

Bsm‘ ZRO 0 a» 13
user ONE 1 a. B
RESIST BCM B «a» 13, complement bit
BSEIT BAC .KO—s B

Instructions using the one bit accumulator.

Eight subinstructions are available to Specify operations
between the specified bit and the K, one bit register.

ESTA K e B , 0 » K Store and clear

BSTC K6» 8 , l 9 K iggre complement and

BLDA B-% K , Load

BLDC Bd+ K , Load complement

BANC Bd'K e K Logic and complement

BORC BO+K 4 K Logic or complement

BAND (B-K).a K Logic and

BORA (B+K) 4 K Logic or

When the carry and overflow indicators are tested by
means of the BSKP subinstruction, the tested indicator
is automatically reset.

Some examples of correctly specified bit operation
instructions.

BSKP ONE CRY

Skip next instruction if the carry indicator is set, the
carry indicator is automatically reset.

BSET ZRO SO

Reset the static overflow indicator.

BSET BCM 170 DT

Complement the sign bit in the T—register (complementation
of a floating point number).

BSET ZRO 170 DT

Set the sign bit in the T—register to zero (absolute value
of a floating point number).

BSET ONE 60 DX

Set bit 6 in X—register to one.

BLDA 160 DA
BSET BAC 160 DX

Copy Amregister bit 16 into X—register bit 16.

”<2

Input—output control

w. E q 1;
f0/ 5: 3 p ADaxno

15 ll 10 9 8 7 0

IOT Operate specified device
according to function. Time 1 me + 0,4—ll ps

The IOT instruction is used both for starting an output
device, in which case the data word is taken from the
A~register, or for reading a data word from an input
device into the A—register. Other functions again may
read or change the status of the device only.

The input—output devices are grouped together and as muck
as 64 different devices may be gathered in one group.
Maximum 4 groups of input—output devices may be connected
to one CPU. Each group is connected to the CPU by means
of a bus system with three cables, a data“input cable a
data—output cable and a controleinformation cable. These
cables connect all devices in the same group. Each
group has two interrupt request lines connected to two
different interrupt levels. Each device may have its
interrupt request signal connected to one of these levels.

The three function bits (8 — lO) usually have the
following meaning:

Bit 8: ACT Activate the Specified device.

Bit 9: SKA Skip if start acceptable. If the device
accepts this input—output instruction
(1.0. the device is ready), the next
instruction is skipped.

Bit 10: PIN Prepare interrupt. Turn on the interrupt
system of the specified device.

The three function bits, ACT, SKA and PIN may in the same
IOT instruction be given any possible combination.

If these function bits are all zero, this is interpreted
as a different instruction:

SNI Skip if not interrupt. If the specified device
has not transmitted an interrupt request the
next instruction is skipped, otherwise the
interrupt system of this device is disabled.

Example of use of input—output instructions.

A programmed wait—loop until the device becomes ready will
normally look like:

IOT SKA DVN % DVN = DEVICE NUMBER
JMP x—l

l» a CO

_ 33 _

To print the
the Teletype

content of bit 0 — 7 of the A-register
paper tape and/or punch:

OD

IOT
JD“?

SKA
u-l

ACT PNT

To read one character from the on—line Teletype into
the A~reqister bit 0 — 7, bit 8 - 15 will be cleared:

SKA
x-l

IOT
JMP

ACT RKE

To program a seanning of several input devices Operated in
parallel and read the information in the random order it
is given (for instance if several Teletypes are connected
to the same computer) the following type of program
will do:

A program to recognize an
look

IOT
JMP
JMP

IOT
JMP
(Till?
IOT
JMP
JMP

like:

IOT
JMP
IOT
JllP
IOT
JMP

SKA
x2
RDVl

SKA
x2
RDVZ
SKA
x2
RDV3

SIII
SDVl
SNI
SDV2
SNI
SDV3

DVl

DV2

DV3

DVl

DV2

DV3

% JUMP TO ROUTINE FOR
READING DEVICE l

input—output interrupt may

% ROUTINE TO SERVICE DEVICE 1

Miscellaneous instructions

There are some instructions that do not require memory
addresses. Some of these instructions are grouped to—
gether in the WBT instruction, where bits 0 - 10 give
further Specifications to this instruction.

Floating point convertion.

Two subinstructions are available. A single precision
fixed point number may be converted to a standard form
floating point number.
converted to a fixed point single precision number.

A floating point number may be
For

both instructions the scaling factor is specified in the

-

39 i

displacement part of the instruction. The range of the
scaling factor is from ~l28 until +127 which gives a
convertion range from approximately 10’“39 to 1039.

The two subinstructions are

NLZ Normalize

Convert the number in the A—register to a standard form
floating number in floating accumulator, using the dis~
placement of the NLZ instruction as a scaling factor.
For integers the scaling factor should be +l6, a greater
scaling factor will cause a greater floating point number.
Because of the single precision fixed point number, the
D—register will be cleared.
Affected: (T), (A), (D) Time 1 me +(O,4n6)ps

DNZ Denormalize $

Convert the floating number in the floating accumulator
to a single precision fixed point number in the A—register,
usinm (he displacement of the DNZ instruction as a scaling
factor. When converting to integers the scaling factor
should be *16, a greater scaling factor will cause the
fixed point number to be greater. The T— and D—registers
are not affected by the DNZ instruction.
Affected; (A) Time 1 mc +(O,4~6)ps

If the convertion should be to or from double precision
fixed point, Special subroutines are available for this
purpose.

Transfer to Aeregister.

The subinstruction TBA, transfer to A-register, is used
for reading those registers which cannot be reached by
means of the ROP or IOT instructions. The following .
registers may be read by means of the TRA subinstruction. aé?

OPR Operator panel register, setting of switches on
the operators nanel.

STS Status word, it consists of the six programmable
status flip~flops, carry indicator, static over—
flow indicator, floating point overflow indicator,
K one bit accumulator, dynamic overflow indica—
tor/ multi shift link flip~flon.

DID Priority interrupt detect register.

PIE Priority interrupt enable register.

The TRA subinstruction should be Specified by TRA fol~
lowed by one of the mneumonics listed above.

Transfer from A—register.

Those registers which cannot be reached by the ROP or IOT
instructions can be set by three subinstructions in the
WBT group.

_ 40 _

The transfer frOm the A—register may be either an
ordinary transfer of all 16 bits or a selective set of
zeros or ones depending on the content of the A—register.

The three subinstructions are

TRR Transfer to register.

MCL Masked clear, for each bit which is a one in
the A—register the corresponding bit in the
Specified register will be reset.

MST Masked set, for each bit which is a one in
the A—register the corresponding bit in the
Specified register will be set.

The STS, status register, may only be set by means of
TRR subinstruction.

The PID and PIE, priority interrupt detect and enable,
registers may be set or reset selectively by means of
the MCL and MST subinstructions.

Control of interrupt system.

The priority interrupt system may be turned on or off by
means of the subinstructions.

ION Turn on priority interrupt system.

IOF Turn off priority interrupt System.

Programmed step of the computer.

The instruction WAIT will cause the computer to stop if
the interrupt system is not enabled. The program counter
will contain one more than the address of the WAIT
instruction (it points to the next instruction after the
wait).

In this programmed wait the STOP/CONTINUE button on the
Operator‘s panel is lighted red. To start the program
in the instruction after the WAIT, push the button
STOP/CONTINUE .

If the priority interrupt system is enabled, WAIT will
cause an exit from the level now Operating (the corres—
ponding bit in PID is reset) and the program with the
current highest priority will be entered, which normally
then will have a lower priority than the program which
contained the WAIT instruction. Therefore the WAIT
instruction means "Give up priority”. When the program
is interrupted in such a WAIT instruction, the P~register
points to the instruction after this WAIT, which will be
the first instruction the next time this program is
entered.

-41..

If there are no interrupt requests on any level when
the WA: T instruction is executed, the program is exited
and the registers saved, but the computer will stop in
and IDLE instruction and wait until any interrupt
requests occur.

Note t.hat it is legal to specify WAIT followed by an
octal number less than 377. This may be useful to de—
tect in which location the program stOpped. The WAIT
instruction is diSplayed at the Operators panel (IR-
register).

A/S NORDATA
NORSK DATA

This

NORD - 4
Drawing no.

ELEKTRONIKK lA/STRMCT/O/V CODE

$$Q§:3mmn¢h¢mw\e

m.m $72 ogowoio 5’
O aoDI.m 5m aéogooI

momw 377 0E0§0*LI_4§_9_
omm 57x Ozotoiltl

”939% ._V-§I§zmw_9? 0;’__;9..;V9.
4 029.0% MD 010;! oI

030.65%? STF 0;O;I:{;0
oakm ADP 003!t
ol/o._ow iii/V ogltotoo

2 094.6?» LDA oilfoiow X I 5 Dmf/aamxmz
050.6% L07" ozltoho A
0541.650 Lox 0;!io.l l
06o.mm App DELLOLO

3 069.0% mm pglélfot‘)
07am). III/VD oIItIéIIOd
079.6% 01%! 05m iI il
loom EDD IDD DD I

I, IDDm ,4 WEDDM “1:949 ELL
JIDDDD

- 561% w -I (0013.,
Hiram PM {0:01 I
Magoo MPY M I;otI lop
mam JMP I'ogI 'o I

5 ”fl” ' : ;”@945:o CJP l I o- I ; l 0
macaw JPL row I I
No.0???) SKP III 0 o 0 gig .

é. Mkm RoP ‘t' 00 I §§l§‘§l3 S L D
[sum MIS I:I;o I o suéin.
wow» 3H7” IiI ,0 I I 3'51?) 5% Muméu “new;
Mow? [CT I II oo §f§3§£ Dov/ct number

“om/“Qt???“ . IE I t ’ '0 '/
7 “@215?“ mm 12:: II 0 mm} Argumtwl

/7‘/.m BOP [I i I :I Punt/ion 8/" NO 49

EEDEDDEDDDDDW‘agaéDW~
DRAWN BY WE Remarks Replacememfor Date
APPROVED BY

DATE m/II ~ 6?
Replaced by Date

