
COURSE MANUAL
CF20

INTRODUCTION TO
ASSEMBLY PROGRAMMING

NORSK DATA A.S

REVISION RECORD

Note 5
O Prin
The allowing pages have been revised or a

CF20 - Introduction to Assembly Programming
January 1975

A/S NORSK DATA-ELE KTRONIKK
Innanveien 57. Oslo 5 — T1f.: 21 73 71

TABLE OF CONTENTS

....ooOoo....

Chapters:

1. ASSEMBLERS

1.1 Basic Concepts of Scanning and Assembly
1.1.1 External Instruction Format
1.1.2 Operation Codes and Address Symbols
1.1.3 Two—Pass and One-Pass Assembly

2. AN IMAGINARY MACHINE

2.1 The Assembly Language MINI

2.2 Instruction Word

2.3 Some Examples
2.3.1 Addition of 3 octal Numbers
2.3.2 Find the smallest Number of three

octal Numbers
2.3.3 Multiply two positive octal Numbers

2.4 Program Modification
2 . 4. 1 Example
2.4.2 "The Turtle"

2 . 5 Extension of the Imaginary Ma chine
2. 5. 1 Example

2 . 6 Commands
2 . 6.1 Define —1abe1
2 . 6 . 2 Termination
2. 6. 3 Execution

2.7 Exercises

3. FUNCTIONAL DESCRIPTION
OF AN ASSEMBLER

3. 1 Symbol Tables

CF20 - Introduction to Assembly Programming

Page:

Chapters:

3. 2 Table Structure

3.3 Example of Assembly

3.4 Exercises

4. INTRODUCTION TO MACRO
INSTRUCTIONS

4.1 Macro Definition, Macro Call and Macro
Expansion

4.2 Format Parameters in Macro Instructions

4.3 Remark

4.4 Exercises

....ooOoo....

CF20 — Introduction to Assembly Programming

4—1

4-1

4—2

4-4

4—4

1.1

1.1.1

1—1

ASSEMBLERS

During execution of a program, the instruction sequence ,is repre—
sented inside the computer by binary instructions in successive
registers. However, the programmer specifies instructions sym-
bolically. The conversion from a symbolic representation of a
program to its binary representation inside the computer can
itself be performed by a computer program. This is referred
to as the assembly process, and the program which performs the
conversion is called an assembler.

An assembler is a program that accepts a program written in
assembly language as input and produces its machine language
equivalent. Each instruction word in an assembly language program
is translated to only one instruction word in machine language.

Thus, we can think of an assembler as a function, the domain of
which is the set of all legal assembly language instructions, and
the range of which is the corresponding set of machine language
instructions. Operation of the assembler A on a symbolic assembly
language program S produces a machine language program M, i.e.,
M = A (S).

Symbolic Machine-
program Assembler A language
S programs M

Figure 1.1: The operation of an assembler.

Basic Concepts of Scanning and Assembly

External Instruction Format

Input to an assembler consists of sequences of symbolic instructions
each of which consists of a number of symbolic fields. It will be
assumed that symbolic instructions consist of a location field fol-
lowed by an operation field, followed by an address field.

< instruction> :: = < location field) (operation field><address field>

The location field contains the instruction label, if there is any.
It is used to give symbolic names to locations in order to be able

CF20 — Introduction to Assembly Programming

1.1.2

1.1.3

to refer to these locations by name. The operation field con-
tains the symbolic operation code. The address field contains
the symbolic operand address. This is a reference to that lo—
cation which has the address as location name.

Operation Codes and Address Symbols

The assembler basically has to deal with two kinds of symbols:

i. operation code symbols
ii. address symbols.

The internal binary codes corresponding to operation code symbols
are specified by a mnemonic table. When the binary code corre—
sponding to an operation code symbol is required, it is determined
by a table look—up in the mnemonic table.

Address symbols do not have fixed internal values. Their values
are assigned by the assembler.

Instructions are normally assembled assuming that they will be
placed in a set of contiguous locations during execution. However,
the value of the location in which the first instruction will be placed
is left open. Addresses are normally relative addresses, relative
to the first instruction of the instruction block.

Two-Pass and One-Pass Assembly

Addresses to locations are specified by the defined symbol table,
DST, constructed during the assembly process. In order to insure that
all symbols are defined before they are referred to, early assemblers
were designed to perform assembly in two passes over the in-
struction sequence. The first pass reads only the location field
and builds the symbol table. In both passes a simulated location
counter keeps track over the address of the instruction currently
being scanned relative to the beginning of the instruction sequence.
The location counter will be referred to as current location counter,
CLC, or program counter, P.

If the binary instructions of the assembled program can be stored
in core during assembly, then assembly can be performed in a
single pass by partial translation of instructions which contain re-
ferences to undefined symbols as they are encountered. Reference
addresses of undefined symbols are noted down in an undefined
symbol table, UST, and are fixed up as location symbols get de-
fined.

CF20 — Introduction to Assembly Programming

1—3

PASS 1 I PASS 2 }

‘ l‘ '

CLC: = 0 CLC: = 0

Read
symbolic
instruction instruction

End Yes Yes
of progra of progra

? ?

No

ocati No
Look up

field non— operation
empty code

9
Yes *

Enter Look up
symbol and operand
CLC into address
DST

I Assemble
and store

4 CLC: = CLC binary instr.
CLC + 1

i
CLC: =

- CLC + 1

Figure 1.2: Operation of a simple two—pass assembler.

CF20 — Introduction to Assembly Programming

1—4

Program P with
definitions D and
references R of
symbols

Figure 1.3:

CLC D R Name DA Name

0 B B 0 A
l A A
2 B A
3 A
‘4
5 B
6 A
7 B

10 A

camp-a

address DA

DST contains
symbol's name
and definition

UST contains un—
defined symbol's
name and reference
address RA

One—pass assembly of a program P.
Situation before A gets defined in location 10 is shown.

Alternatively, each entry in the defined symbol table can contain
one more field which indicates whether the symbol is defined or
not. At any time, the last occurence of a reference to an unde-
fined symbol is contained in the defined symbol tables, the address
field in the instruction is used to chain references to the same
undefined symbol.

Name Addr. D/R

Table DST before A
gets defined.

CLC D R CLC D R
0 B 0
1 A l “:4"
2 B 2 0
3 A 3 -
4 4
5 B 5 0
6 A 6
7 B 7 0

10 A 8 A

Program P, Program P before
originally A gets defined

Figure 1.4: One—pass assembly by use of one table only.

CF20 — Introduction to Assembly Programming.

2.1

2—1

AN IMAGINARY MACHINE

We shall now present an imaginary machine which consists of a
processor, an internal memory of 1/4K 16 bits words and a
Teletype as input/output unit.

Each location in the memory contains an octal number. The
contents may be interpreted in two ways: either as an instruction
or=as an operand's value.

An instruction consists of two parts: a function code and a reference
to an operand address.

The processor has two registers which have the same length as
a memory location:

i. A-register is the accumulator
ii. P-register is the program counter. It is increased by

one for each new instruction.

The Assembly Language MINI

The assembly language of the imaginary machine is called MINI.
It is a somewhat extended subset of NORD computers' instruction
repertoire.

Statements in MINI have one of following formats:

(instructiorb :: = {<labe1>} <operation> <operand>

or

(symbol definition> :: = <1abel>, <value>

where

<1abel> :: = <1etter> I (label) <1etter> I <1abel> (decimal digit>

<operand> :: = <1abel>
(value) :: = <1abe1>| <octal number)

”A (label), which is a definition of a symbol's address, and an
< operand> which is a reference to a symbol's value, may con-
tain up to four alphanumberic characters. An < octal number)
may contain up to six octal digits.

The (operation) must be one of the legal MINI operation listed
below:

CF20 — Introduction to Assembly Programming

2. 2

LDA Load accumulator
STA Store accumulator
ADD Add to accumulator
SUB Subtract from accumulator
JMP Unconditional jump
JAP Jump if accumulator is positive
JAZ Jump if accumulator is zero
DIP Read an octal number into accumulator
OUT Write the octal number contained in accumulator
HLT Halt

Instruction Word

If a location contains an instruction, this is interpreted as a function
code and a reference to an operand address, (see figure 2.1).
Addressing is relative to the P—register. In other words: reference
to an operand address is recomputed as a displacement from the
definition address to the reference address:

displacement: = definition address - reference address

151413_121110 9 8 7 6 5 4 3 2'1 0

-.-_J
I
I
I
I
I

: D I
u I I
| b I
I I I

I

I
I
I

A a I
k.

V V

Function code Displacement, A

Figure 2.1: MINI's instruction word.

Both backward and foreward references are permitted such that the
displacement may be negative or positive. Since the displacement
must be represented by 8 bits, the Sign inclusive, it is possible
to refer to Operands within an interval of 256 locations (the size
of the memory). The displacement is limited by the following
inequality:

-128 < A < 127.

This means that the last reference to the defined symbol may not
occur later than 128 locations after the corresponding < symbol de-
finition> . On the other hand, reference to an undefined symbol
must not occur earlier than 127 locations prior to the <symbol
definition> .

CF20 — Introduction to Assembly Programming

2.3 Some Examples

2.3.1 Addition of 3 octal Numbers

MINI -program:

INP
STA NUMl
INP
STA NUM2
INP
STA NUM3
ADD NUMl
ADD NUM2
STA SUM
HLT

NUMl, 0
NUM2, 0
NUM3, 0
SUM, 0

2.3.2 Find the smallest Number of three octal Numbers

MINI-program:

INP
STA NUMl
INP
STA NUM2
INP
STA NUM3
SUB NUM2
JAP S M2
LDA NUM3
JMP TST2

SM2, LDA NUM2
TST2, SUB NUMl

JAP FIN
ADD NUMl
JMP WRTE

FIN, LDA NUMl
WRTE, OUT

HLT
NUMl, 0
NUM2, 0
NUM3, 0

CF20 - Introduction to Assembly Programming

2.3.3

2.4

2.4.1

Multiply two positive octal Numbers

MINI -program:

INP
STA NUMl
STA PROD
INP
STA NUMZ
JAZ FINl

CONT, SUB ONE
STA NUMZ
JAZ FIN
LDA PROD
ADD NUMl
STA PROD
LDA NUMZ
JMP CONT

FIN, LDA PROD
FINl, OUT

HLT
NUMl, 0
NUMZ, 0
PROD, 0
ONE, 1

Program Modification

In the previous examples we distinguished between words containing
instructions and words containing data. It might be useful to be
able to modify instructions, too, in order to be spared rewriting
similar instructions.

Example:

Read n numbers into the locations NUM, NUM+1, NUM+2,
NUM+n—1. Compute their sum and place it in location SUM.

Instead of writing n input and store instructions and n—1 addition
instructions, we may use loops where these instructions are re-
peated and modified.

MINI—program:

INP
STA N Numbe r of numbe rs
S TA N1

CF20 — Introduction to Assembly Programming

2.4.2

[\3 IQ'I

READ , INP
STRE ‘ STA NUM Read numbers

LDA N1

2T}: 13l Test if N numbers are read
JAZ REST
LDA STRE
ADD ONE Modify store instruction
STA STRE
JMP READ Repeat

REST , LDA ORGl Restore correct
STA STRE instruction
LDA N Restore number of
STA N1 numbers

$113: 351510 Initiate summation

LOOP , LDA SUM
ADl , ADD NUM Summation

STA SUM
LDA N1

:32 13l Test if finished

JAZ FIN

:33 ‘83; Modify addition

STA AD 1 instruction

JMP LOOP Repeat
FIN . LDA ORG2 Restore original store

STA ADl instruction

3%? SUM Write result

HLT
ZERO , 0
ONE , 1
N , 0
N1 , 0
ORGl , 4046
ORG2 , 60026
SUM , 0
NUM , 0

"The Turtle"

The program moves itself further in memory.

MINI-program:

THIS , LDA THIS Moves the i-th
STRE , STA NEXT instruction

CF20 — Introduction to Assembly Programming

[\3

[\D .5.1

2—6

LDA THIS Modify instruction in
ADD ONE location THIS
STA THIS
LDA STRE Modify instruction inADD ONE location STRESTA STRE
LDA PLEN
SUB ONE Test if finished
STA PLEN
JAZ NEXT
JMP THIS Repeat

ONE . l
PLEN , 17
NEXT , 0

Extension of the Imaginary Machine

Usually, programs consist of parts which are systematically re-
peated. In mathematics and high—level languages, we use indexes
to refer to a given operand. An index may be a variable which
changes its value.

In the preceding section, we saw examples of how to program
loops. Indexing was implemented by changing the operand part
of those instructions which refer to an indexed variable. This
is clumsy and time—consuming. We now introduce a new register
X, called the index register. It has the same length as the other
two registers. There are three instructions to manipulate the
X—register:

LDX Load X—register
S’I'X Store X-register
JNC Increment X—register and jump if it is negative.

Example

Alternative solution for the problem in example 2.4.1:

MINI—program:

LDA ADR
ADD N Base address
STA ADR
LDA ZERO
SUB N Negation of N
STA N
LDX N

CF20 — Introduction to Assembly Programming

2.6

2.6.1

2—7

LDA ZERO
ADD ADR, X Summation
JNC NEXT Test if finished
STA SUM
OUT
HLT

ADR , NUM
ZERO , 0
N , 0
SUM . 0
NUM , 0

The effective address used in location NEXT is given by the con-
tents of ADR plus the contents of the X-register, i.e., effective
address: = contents (ADR) + X = (NUM + N) + X, where X =
—N, —(N — l), —l.

Commands

Commands have a number of different formats. For the most
part commands direct the assembler to take some action and
cause no instructions to be assembled, but there are exceptions.

Three commands are of paramount importance; the define label
command, the termination command and the execution command.

Define —1abe1

This command is executed by writing a symbol at the beginning
of a line followed by a comma (,). When this command is exe—
cuted, the specified symbol is given as its value the current
value of the location counter. Thus, if CLC = 400

A.

gives A the value 400. The comma in a label definition must
not be confused with the comma in the symbol ,X.

With the above command, instructions and constants, programs
can be written. For example, if CLC = 400 in the beginning,

STRT, LDA F 00
STA L
HLT

F00 , 3
L , 0

CF20 — Introduction to Assembly Programming

2.6.2

2.6.3

2.7

2.7.1

2.7.2

2.7.3

2—8

This is equivalent to

Location 400 -—-- 044003
004003
146162
000003
000000

where STRT's address is 400, F00's address is 403 and L's
address is 404.

The = command is another method of giving a value to a symbol.
The way to use this command is to write a symbol at the beginning
of a line and to immediately follow the symbol by the = sign (no
intervening characters including spaces). The = sign is then fol—
lowed by an expression composed of symbols and numbers. The
arithmetic value of this expression is made the value of the symbol

A = STRT + 1

There may be no undefined symbols in the expression. This com—
mand us used to define symbols which are undefined after assembly
has been terminated.

Termination

The termination command)END is used to terminate assembling.
It must follow the last line in the program.

Execution

The execution command)RUN is used to start execution of a
program. It must have been preceded by an)END command.

Exercises

Write a program that divides a number A by a number B. The
quotient is placed in location Q and the rest in R.

Write a program that outputs 3 numbers in ascending order.

Write a program that reads another arbitrary program into the
locations following your program and transfers control to it
after instruction HLT has been read.

CF20 — Introduction to Assembly Programming

2—9

2.7.4 The "turtle" contains some mistakes. Write a correct "turtle"—
program

1. without using the X—register.

ii. by using the X—register.

CF20 - Introduction to Assembly Programming

3. 1

3—1

FUNCTIONAL DESCRIPTION OF AN ASSEMBLER

Each mnemonic has a unique binary value (See table 3. 1). All
the mnemonics and their binary or octal equivalents are stored
in a table which is called the Mnemonic Table.

During assembly of an instruction, the assembler just adds the
value of all the mnemonics which are encountered in the instruc—
tion. The total sum of this procedure is then the completely
assembled instruction in binary or octal format. This sum
which is now equal to the actual machine instruction, is now
stored in memory.

The assembler employs a socalled Current Location Counter (CLC)
to keep track of where in the memory an instruction is saved, and
the value of the CLC is incremented by 1 for each instruction
which is interpreted.

In this manner the instructions will be stored sequentially in
memory during the assembly,pr,ocess.

Symbol Tables

The Definedymbol Table, DST, contains all symbols defined by
”, " during assembling or by "=" afterwards.

That is:

SYM, 2
SYM1 = SYM + 1

The symbols SYM and SYM1 are said to be local or user defined
symbols.

When the assembler encounters SYM, 2, the symbol is first tested
to see ‘if it is already contained in the DST, thereby preventing
the double definition of a symbol. If is not contained in DST, it
is stored in DST with the octal value of CLC, i.e. its definition
address.

If SYM has been defined before, an error message is printed out
saying that the symbol SYM is double defined.

Next step in the processing of the symbol SYM is to see if it is
part of the socalled Undefined Symbol Table, UST.

The Undefined Symbol Table is used for symbols which are referred
to but not yet defined. If there are references to the symbol SYM

CF20 - Introduction to Assembly Programming

3.2

3.3

3-2

prior to SYM, 2, all these references and their addresses are kept
in the UST. If the symbol SYM has been referred to prior to the
definition of SYM, the actual displacement is now calculated by
the assembler and the displacement is now added into the instructions
which have referred to SYM. After this has been done, the symbol
SYM is deleted from the UST.

As the last step in the assembly process of SYM, 2, the binary
value of 2 is placed in the memory location the CLC is pointing
to, and the CLC is incremented by 1.

Table Structure

The structure of the mnemonic, defined—symbol and undefined—symbol
table is basically the same.

Each symbol in the mnemonic table will have an internal represen—
tation which require two memory locations. Symbols in DST and
UST require three memory locations.

location location

11 Symbol n Symbol (first part)

n + 1 Value n + 1 Symbol (last part)

n + 2 Value

Mnemonic Table DST and UST

Figure 2.1: Table Structure

In the mnemonic table only one location is used to store the symbol.
Mnemonic symbols consist of three letters each of which are stored
in five bits. The second location is used for the fixed binary
value of the mnemonic symbol.

In DST and UST the two first locations are used to store the actual
symbol itself. The third location is used for saving the value of
CLC, either as definition address in DST or as reference address
in UST.

Example of Assembly

Assume that the following instruction is to be assembled:

CF20 — Introduction to Assembly Programming

3—3

LDA NUM)

To assemble this instruction, the assembler executes the following
steps:

i. Each character of a symbol is read one by one.
Space indicates to the assembler that it has read
a complete symbol. This would first be LDA.

ii. Next, the symbol will be tested to see if it is found
in the Mnemonics Table or not. It if is a mnemonic
its octal value (in this example 0440008) will be saved.
If it is not a mnemonic, the assembler continues at
step iv.

iii. On completion of step ii, the assembler continues
reading characters of which constitutes the next symbol
which is now NUM.

iv. The symbol NUM is tested for membership of the de—
fined symbol table to see if NUM is already defined.
If true, the displacement: = CLC - definition address
is calculated and added to the instruction saved so far.

If the symbol NUM is not a member of the defined symbol
table, NUM will be placed in the undefined symbol table
together with the value of the CLC which now holds the
value of memory location where the symbol NUM is being
referred to by the instruction LDA NUM. Now, only the
value of LDA is stored in the location where CLC is
pointing to, and the assembly of the instruction LDA NUM
will not be completed before NUM is defined.

v. The value of the complete instruction is stored in memory
at the location given by CLC, and the assembler is
ready to start the assembly process for the next instruction.

A complete flow diagram for any assembly process is
shown in figure 3.2.

CF20 - Introduction to Assembly Programming

Take other
appropriate
action

3—4

(START I

ll C)

Read next
statement

Change value
of CLC to

H‘— specified
value

1

Replace
symbol by
its value

Add internal
values to
generate in—
struction

i

Put symbol
and CLC in
DST

symbol in
US T

Add displace—
ment to loca—
tion specified
in UST

l
Delete entry
from UST

Replace Is Put value into
symbol by . . .
dis lacement symbol in location spec1-

p ‘
g DS’l‘ fied by CLC
s ‘3

l
Enter symbol Increment the
and CLC into value of CLC

UST

Figure 3.2:

CF20 - Introduction to Assembly Programming

Simplified flow chart of assembling process

l__...

3.4

3.4.1

3.4.2

3.4.3

3—5

Octal value Mnemonic 15 14 13 12 ll 10 9 8 7 6 5 4 3 2 1 0

004000 STA
014000 STX
044000 LDA
054000 LDX
060000 ADD Displacement
064000 SUB A
124000 JMP
130000 JAP
131000 JAZ
132400 JNC
146162 HLT
160000 INP
161000 OUT
003000 ,X

01110010

OHHr—IHHHHOOOOOO op—w—n—Ioooor—It—u—Iwoo OHHOHHHHHr—Aoooo oooov—w—w—tooowor—Io oocn—tooov—H-Iov-JHHH HOOi—‘D—‘OOOOOOOOO Ht—‘OOOD—‘OOOOOOOO oooowooooooooo

Table 3.1: Summary of MINI instructions with internal representation

Exercises

Find the octal representation of the programs in example 2.3.2
and example 2.3.3.

Use the flow chart in figure 3.2 to trace the program of example
2.4.1. Build the defined- and undefined-symbol table.

Suppose we want to construct a one-pass assembler which uses
only one table (see section 1.1.3). Change the flow chart in figure
3.2 to fit this demand.

CF20 — Introduction to Assembly Programming

6

\I

4.1

INTRODUCTION TO MACRO INSTRUCTIONS

The assembly language programmer often finds it necessary to
repeat some blocks of instructions many times within a program.
Macro facilities allow the programmer to associate names with
symbol strings. In employing a macro, the programmer essentially
defines a single instruction to represent a block of code. For
every occurence of this one—line macro instruction in a program,
the macro processor (part of the assembler) will substitute the
entire block.

Macro Definition, Macro Call and Macro Expansion

Macro facilities in an assembler allow the programmer to asso-
ciate a name with a sequence of symbolic instructions and to
subsequently use that name to denote the sequence of instructions.

Consider for example the following program:

INP
ADD X
OUT

INP
ADD X
OUT

X, '.
In the above program, the sequence

INP
ADD X
OUT

occurs twice. It is convenient to name frequent sequences of
instructions and to denote their occurence by the abbreviated
name. A name is attached to a sequence of instructions by
means of a macro instruction which may be formed in the following
way:

CF20 - Introduction to Assembly Programming

4.2

4—2

MACRO < macro name >
<sequence of instructions >

END

A macro definition is introduced by the control operation MACRO
followed by the <macro name> . The <sequence of instructions>
constitutes the macro body. The macro definition is terminated by
the control operation END.

When a macro gets defined, the name and the macro body are
entered into the macro table. The macro table is a symbol
table of name—value correspondence, just like the mnemonic table
or the defined—symbol table. It is consulted when the value, the
macro body, associated with a macro name is to be determined.

The macro definition does not give rise to any lines of generated
code. The use of the macro name as an operation mnemonic
in an assembly program causes substitution of the macro body
for the macro name and subsequent assembly of the generated
lines of instruction. This use of a macro name is referred to as
a macro call. ,I The instruction sequence substituted for the macro
name is referred to as the macro expansion generated by a macro
call.

Our example might be rewritten as follows, assigning the name
INCR to the repeated sequence.

Source Expanded source

MACRO INCR
INP
ADD X
OUT
END

I INP
INCR ADD X
I OUT

I INP
INCR ADD X
I OUT

X l O O O IIIIII X ‘ : I C IIIIII

Formal Parameters in Macro Instructions

So far, we have only discussed parameterless macros. All of the
calls to any given macro will produce precisely the same macro

CF20 — Introduction to Assembly Programming

expansion. This is unnecessarily restrictive. An important ex—
tension is to allow macro definitions with formal parameters which
can be substituted by different actual parameters in different
macro calls.

Different fields or an entire instruction may be treated as formal
parameters.

Consider the following macro definition which treats the operand
field as formal parameters:

MACRO SUM X, Y, Z
LDA X
ADD Y
STA Z
END

Macro calls of this macro must contain three actual parameters.
Two kinds of substitution are performed to obtain the macro ex—
pansion resulting from a macro call:

i. Actual parameters replace formal parameters

ii. The resulting macro body replaces the macro call.

Thus the macro call

SUM A, B, A

would result in the macro expansion

LDA A
ADD B
STA A

Similarly, the operation field or a complete instruction may be
treated as formal parameters. The following example has a
parameter which is a complete instruction, a parameter which is
an operation field and a parameter which is an operand field:

MACRO KAHU X, Y, Z
X
Y Z
STA Z
END

The macro call

KAHU (LDA A), SUB, B

CF20 - Introduction to Assembly Programming

4.3

4.4

4.4.1

4.4.2

would give rise to the macro expansion

LDA
SUB
STA

A
B
B

Actual parameters may in general be any strings which result in
expansion of well-formed lines of instruction.

Remark

The macro facility is not part of the MINI assembly language.

Exercises

Define a macro which shortens the programs in example 2.3.2
and 2.3.3.

Consider the following program:

MACRO READ
INP
STA
END

MACRO SE Q3
STA
JAZ
LDA
END
READ
STA
READ

NEXT, LDA
SUB
SEQ3

CONT, SUB
SEQ3
ADD
STA
LDA
JMP

FIN, LDA
OUT
HLT

Z

Z

0P1, L, 0P2
0P1
L
0P2

X
PROD
N
N
ONE
N, FIN, X
ONE
X1, NEXT, PROD
X
PROD
X1
CONT
PROD

CF20 — Introduction to Assembly Programing

X,
N,
PROD,
‘X1,
ONE, HOOOO

How will the program be expanded? Trace the program for X=2
and N=3. Which values do X, N, PROD and X1 have after exe-
cution?

4.4.3 Write a MINI—program to find the greatest common divisor of
two numbers X and Y.

Try to shorten your source program by introducing macros.

CF20 - Introduction to Assembly Programming

I
U

3.. . A/S NORSK DATA—ELEKTRONIKK

:fiifigi
Lorenveien 57. Oslo 5 - Tlf. 21 73 71

:0. 0

COMMENT AND EVALUATION SHEET
CF20 — Introduction to Assembly Programming
January 1975

In order for this manual to develop to the point where it best
suits your needs, we must have your comments, corrections,
suggestions for additions. etc. Please write down your comments
on this pre-addressed form and post it. Please be specific
wherever possible.

FROM:

- we make bits for the future

-
NORSK DATA A.S BOX 4 LINDEBERG GARD OSLO 10 NORWAY PHONE:

v‘

4.2m

..__,,

.J‘II’

I

r'r

L

391601 TELEX: 18661

